Author: Michael Berry
Publisher:
ISBN:
Category : Aggregates (Building materials)
Languages : en
Pages : 172
Book Description
This research effort was focused on evaluating the feasibility of using minimally processed reclaimed asphalt pavement (RAP) as aggregate replacement in concrete pavements. This research demonstrated that concretes with up to 50 percent of the fine aggregates and 100 percent of the coarse aggregates replaced with RAP were suitable for concrete pavement. A statistical experimental design procedure (response surface methodology - RSM) was used to investigate proportioning RAP concrete mixtures to achieve desired performance criteria. Based on the results of the RSM investigation, two concrete mixtures were selected for further evaluation: a high RAP mix with fine and coarse aggregate replacement rates of 50 and 100 percent respectively, and a "high" strength mix with one half of the RAP used in the high RAP mix. Both mixes met MDT concrete pavement specifications for slump (1.5 inches), air content (6 percent), and 28-day compressive and tensile strengths (3,000 psi and 500 psi, respectively). These two concrete mixtures were subjected to a suite of mechanical and durability tests to evaluate their potential use in Montana roadways. Mechanical properties tested were compressive and tensile strength, elastic modulus, shrinkage, and creep. Durability tests included alkali-silica reactivity, absorption, abrasion, chloride permeability, freeze-thaw resistance, and scaling. Overall, both mixes performed adequately in these mechanical and durability tests, although it is important to note that the inclusion of RAP had an obvious negative impact on nearly every property tested relative to those of control mixes made with 100 percent conventional aggregates.
Feasibility of Reclaimed Asphalt Pavement as Aggregate in Portland Cement Concrete
Author: Michael Berry
Publisher:
ISBN:
Category : Aggregates (Building materials)
Languages : en
Pages : 172
Book Description
This research effort was focused on evaluating the feasibility of using minimally processed reclaimed asphalt pavement (RAP) as aggregate replacement in concrete pavements. This research demonstrated that concretes with up to 50 percent of the fine aggregates and 100 percent of the coarse aggregates replaced with RAP were suitable for concrete pavement. A statistical experimental design procedure (response surface methodology - RSM) was used to investigate proportioning RAP concrete mixtures to achieve desired performance criteria. Based on the results of the RSM investigation, two concrete mixtures were selected for further evaluation: a high RAP mix with fine and coarse aggregate replacement rates of 50 and 100 percent respectively, and a "high" strength mix with one half of the RAP used in the high RAP mix. Both mixes met MDT concrete pavement specifications for slump (1.5 inches), air content (6 percent), and 28-day compressive and tensile strengths (3,000 psi and 500 psi, respectively). These two concrete mixtures were subjected to a suite of mechanical and durability tests to evaluate their potential use in Montana roadways. Mechanical properties tested were compressive and tensile strength, elastic modulus, shrinkage, and creep. Durability tests included alkali-silica reactivity, absorption, abrasion, chloride permeability, freeze-thaw resistance, and scaling. Overall, both mixes performed adequately in these mechanical and durability tests, although it is important to note that the inclusion of RAP had an obvious negative impact on nearly every property tested relative to those of control mixes made with 100 percent conventional aggregates.
Publisher:
ISBN:
Category : Aggregates (Building materials)
Languages : en
Pages : 172
Book Description
This research effort was focused on evaluating the feasibility of using minimally processed reclaimed asphalt pavement (RAP) as aggregate replacement in concrete pavements. This research demonstrated that concretes with up to 50 percent of the fine aggregates and 100 percent of the coarse aggregates replaced with RAP were suitable for concrete pavement. A statistical experimental design procedure (response surface methodology - RSM) was used to investigate proportioning RAP concrete mixtures to achieve desired performance criteria. Based on the results of the RSM investigation, two concrete mixtures were selected for further evaluation: a high RAP mix with fine and coarse aggregate replacement rates of 50 and 100 percent respectively, and a "high" strength mix with one half of the RAP used in the high RAP mix. Both mixes met MDT concrete pavement specifications for slump (1.5 inches), air content (6 percent), and 28-day compressive and tensile strengths (3,000 psi and 500 psi, respectively). These two concrete mixtures were subjected to a suite of mechanical and durability tests to evaluate their potential use in Montana roadways. Mechanical properties tested were compressive and tensile strength, elastic modulus, shrinkage, and creep. Durability tests included alkali-silica reactivity, absorption, abrasion, chloride permeability, freeze-thaw resistance, and scaling. Overall, both mixes performed adequately in these mechanical and durability tests, although it is important to note that the inclusion of RAP had an obvious negative impact on nearly every property tested relative to those of control mixes made with 100 percent conventional aggregates.
Feasibility of Reclaimed Asphalt Pavement as Aggregate in Portland Cement Concrete Pavements -
Author:
Publisher:
ISBN:
Category : Pavements, Asphalt
Languages : en
Pages : 46
Book Description
This research was focused on evaluating the feasibility of using minimally processed reclaimed asphalt pavement (RAP) as aggregate replacement in concrete pavements. An initial phase of research demonstrated that concretes with up to 50 percent of the fine aggregates and 100 percent of the coarse aggregates replaced with RAP were suitable for concrete pavement. However, the field performance of these mixes was not evaluated. Further, these initial mixes contained a significant proportion of cement in order to achieve the desired performance criteria, hindering the economic benefit of using this recycled material in concrete. Therefore, the research discussed herein focused on: (1) evaluating the field performance of RAP concrete through a field demonstration project, and (2) reducing the amount of cement required in the RAP concrete by including water-reducing admixtures. As part of the field demonstration project, two RAP-concrete slabs were cast on a roadway near Lewistown, MT, and monitored for damage, shrinkage, and curling over a two-year period. There were no logistical issues associated with the construction of the slabs, and no damage and only minor shrinkage/curling was observed. In regards to the mixture optimization, two modified mix designs with reduced cement contents were developed, and evaluated with a suite of mechanical and durability tests. Mechanical properties tested were compressive and tensile strength, elastic modulus, and shrinkage. Durability tests included abrasion, chloride permeability, freeze-thaw resistance, and scaling. These mixes performed well with respect to all tests, with the exception of the chloride permeability. Although both mixes performed well, the resulting mixes were lean and were difficult to get good consolidation. Moreover, the process for batching these mixes may be considered a hindrance, as it involved slump adjusting the mixes with the water-reducing admixture. This was required because the nature of the RAP aggregates made it difficult to adjust mixes for variations in moisture content.
Publisher:
ISBN:
Category : Pavements, Asphalt
Languages : en
Pages : 46
Book Description
This research was focused on evaluating the feasibility of using minimally processed reclaimed asphalt pavement (RAP) as aggregate replacement in concrete pavements. An initial phase of research demonstrated that concretes with up to 50 percent of the fine aggregates and 100 percent of the coarse aggregates replaced with RAP were suitable for concrete pavement. However, the field performance of these mixes was not evaluated. Further, these initial mixes contained a significant proportion of cement in order to achieve the desired performance criteria, hindering the economic benefit of using this recycled material in concrete. Therefore, the research discussed herein focused on: (1) evaluating the field performance of RAP concrete through a field demonstration project, and (2) reducing the amount of cement required in the RAP concrete by including water-reducing admixtures. As part of the field demonstration project, two RAP-concrete slabs were cast on a roadway near Lewistown, MT, and monitored for damage, shrinkage, and curling over a two-year period. There were no logistical issues associated with the construction of the slabs, and no damage and only minor shrinkage/curling was observed. In regards to the mixture optimization, two modified mix designs with reduced cement contents were developed, and evaluated with a suite of mechanical and durability tests. Mechanical properties tested were compressive and tensile strength, elastic modulus, and shrinkage. Durability tests included abrasion, chloride permeability, freeze-thaw resistance, and scaling. These mixes performed well with respect to all tests, with the exception of the chloride permeability. Although both mixes performed well, the resulting mixes were lean and were difficult to get good consolidation. Moreover, the process for batching these mixes may be considered a hindrance, as it involved slump adjusting the mixes with the water-reducing admixture. This was required because the nature of the RAP aggregates made it difficult to adjust mixes for variations in moisture content.
Engineering Challenges for Sustainable Future
Author: Noor Amila Wan Abdullah Zawawi
Publisher: CRC Press
ISBN: 1315349477
Category : Science
Languages : en
Pages : 787
Book Description
Engineering Challenges for Sustainable Future contains the papers presented at the 3rd International Conference on Civil, Offshore & Environmental Engineering (ICCOEE2016, Kuala Lumpur, Malaysia, 15-17 August 2016), under the banner of World Engineering, Science & Technology Congress (ESTCON2016). The ICCOEE series of conferences started in Kuala Lumpur, Malaysia 2012, and the second event of the series took place in Kuala Lumpur, Malaysia 2014. This conference series deals with the civil, offshore & environmental engineering field, addressing the following topics: • Environmental and Water Resources Engineering • Coastal and Offshore Engineering • Structures and Materials • Construction and Project Management • Highway, Geotechnical and Transportation Engineering and Geo-informatics This book is an essential reading for academic, engineers and all professionals involved in the area of civil, offshore and environmental engineering.
Publisher: CRC Press
ISBN: 1315349477
Category : Science
Languages : en
Pages : 787
Book Description
Engineering Challenges for Sustainable Future contains the papers presented at the 3rd International Conference on Civil, Offshore & Environmental Engineering (ICCOEE2016, Kuala Lumpur, Malaysia, 15-17 August 2016), under the banner of World Engineering, Science & Technology Congress (ESTCON2016). The ICCOEE series of conferences started in Kuala Lumpur, Malaysia 2012, and the second event of the series took place in Kuala Lumpur, Malaysia 2014. This conference series deals with the civil, offshore & environmental engineering field, addressing the following topics: • Environmental and Water Resources Engineering • Coastal and Offshore Engineering • Structures and Materials • Construction and Project Management • Highway, Geotechnical and Transportation Engineering and Geo-informatics This book is an essential reading for academic, engineers and all professionals involved in the area of civil, offshore and environmental engineering.
Proceedings of Italian Concrete Conference 2022
Author: Maria Antonietta Aiello
Publisher: Springer Nature
ISBN: 3031431022
Category : Technology & Engineering
Languages : en
Pages : 731
Book Description
This book gathers the best peer-reviewed papers presented at the Italian Concrete Conference, held in Naples, Italy, on October 12-15, 2022. The conference topics encompass the aspects of design, execution, rehabilitation, and control of concrete structures, with particular reference to theory and modeling, applications and realizations, materials and investigations, technology, and construction techniques. The contributions amply demonstrate that today’s structural concrete applications concern not only new constructions, but more and more rehabilitation, conservation, strengthening, and seismic upgrading of existing premises, and that requirements cover new aspects within the frame of sustainability, including environmental friendliness, durability, adaptability, and reuse of works and/or materials. As such, the book represents an invaluable, up-to-the-minute tool, providing an essential overview of structural concrete, as well as all new materials with cementitious matrices.
Publisher: Springer Nature
ISBN: 3031431022
Category : Technology & Engineering
Languages : en
Pages : 731
Book Description
This book gathers the best peer-reviewed papers presented at the Italian Concrete Conference, held in Naples, Italy, on October 12-15, 2022. The conference topics encompass the aspects of design, execution, rehabilitation, and control of concrete structures, with particular reference to theory and modeling, applications and realizations, materials and investigations, technology, and construction techniques. The contributions amply demonstrate that today’s structural concrete applications concern not only new constructions, but more and more rehabilitation, conservation, strengthening, and seismic upgrading of existing premises, and that requirements cover new aspects within the frame of sustainability, including environmental friendliness, durability, adaptability, and reuse of works and/or materials. As such, the book represents an invaluable, up-to-the-minute tool, providing an essential overview of structural concrete, as well as all new materials with cementitious matrices.
Sustainable Concrete Pavements
Author:
Publisher:
ISBN: 9780982014424
Category : Pavements, Concrete
Languages : en
Pages : 102
Book Description
Developed as a more detailed follow-up to a 2009 briefing document, Building Sustainable Pavement with Concrete, this guide provides a clear, concise, and cohesive discussion of pavement sustainability concepts and of recommended practices for maximizing the sustainability of concrete pavements. The intended audience includes decision makers and practitioners in both owner-agencies and supply, manufacturing, consulting, and contractor businesses. Readers will find individual chapters with the most recent technical information and best practices related to concrete pavement design, materials, construction, use/operations, renewal, and recycling. In addition, they will find chapters addressing issues specific to pavement sustainability in the urban environment and to the evaluation of pavement sustainability. Development of this guide satisfies a critical need identified in the Sustainability Track (Track 12) of the Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map). The CP Road Map is a national research plan jointly developed by the concrete pavement stakeholder community, including Federal Highway Administration, academic institutions, state departments of transportation, and concrete pavement-related industries. It outlines 12 tracks of priority research needs related to concrete pavements. CP Road Map publications and other operations support services are provided by the National Concrete Pavement Technology Center at Iowa State University. For details about the CP Road Map, see www.cproadmap.org/index.cfm.
Publisher:
ISBN: 9780982014424
Category : Pavements, Concrete
Languages : en
Pages : 102
Book Description
Developed as a more detailed follow-up to a 2009 briefing document, Building Sustainable Pavement with Concrete, this guide provides a clear, concise, and cohesive discussion of pavement sustainability concepts and of recommended practices for maximizing the sustainability of concrete pavements. The intended audience includes decision makers and practitioners in both owner-agencies and supply, manufacturing, consulting, and contractor businesses. Readers will find individual chapters with the most recent technical information and best practices related to concrete pavement design, materials, construction, use/operations, renewal, and recycling. In addition, they will find chapters addressing issues specific to pavement sustainability in the urban environment and to the evaluation of pavement sustainability. Development of this guide satisfies a critical need identified in the Sustainability Track (Track 12) of the Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map). The CP Road Map is a national research plan jointly developed by the concrete pavement stakeholder community, including Federal Highway Administration, academic institutions, state departments of transportation, and concrete pavement-related industries. It outlines 12 tracks of priority research needs related to concrete pavements. CP Road Map publications and other operations support services are provided by the National Concrete Pavement Technology Center at Iowa State University. For details about the CP Road Map, see www.cproadmap.org/index.cfm.
Sustainable Concrete Materials and Structures
Author: Ashraf Ashour
Publisher: Elsevier
ISBN: 0443156735
Category : Technology & Engineering
Languages : en
Pages : 749
Book Description
Sustainable Concrete Materials and Structures focuses on recent research progress and innovations in this important field of research. All aspects of the technical routes to sustainable concrete and structures are discussed in detail. These include recent findings on sustainable concrete production and structural design and construction. Low-carbon cement, sustainable concrete mix design, durability, and structural applications are discussed in detail. Emphasis is placed on how to bring some of the innovations in concrete technology closer to market. Information on techno-economic analysis, economy of scale, and the supply chain of sustainable concrete is also addressed. The book will be an essential reference resource for academic and industrial researchers working in civil engineering, material science, chemical engineering, and the development and manufacture of construction materials. - Provides a comprehensive collection of technical reviews on the latest advancements in sustainable concrete materials and structures - Presents state-of-the-art research on preparation, production, processing, and implementation techniques for sustainable concrete materials and structures - Features techno-economic analysis for each technology discussed - Covers lifecycle assessment, the Circular Economy and end of life of concrete structures - Includes industry case studies on implementation
Publisher: Elsevier
ISBN: 0443156735
Category : Technology & Engineering
Languages : en
Pages : 749
Book Description
Sustainable Concrete Materials and Structures focuses on recent research progress and innovations in this important field of research. All aspects of the technical routes to sustainable concrete and structures are discussed in detail. These include recent findings on sustainable concrete production and structural design and construction. Low-carbon cement, sustainable concrete mix design, durability, and structural applications are discussed in detail. Emphasis is placed on how to bring some of the innovations in concrete technology closer to market. Information on techno-economic analysis, economy of scale, and the supply chain of sustainable concrete is also addressed. The book will be an essential reference resource for academic and industrial researchers working in civil engineering, material science, chemical engineering, and the development and manufacture of construction materials. - Provides a comprehensive collection of technical reviews on the latest advancements in sustainable concrete materials and structures - Presents state-of-the-art research on preparation, production, processing, and implementation techniques for sustainable concrete materials and structures - Features techno-economic analysis for each technology discussed - Covers lifecycle assessment, the Circular Economy and end of life of concrete structures - Includes industry case studies on implementation
Sustainable Construction and Building Materials
Author: Bibhuti Bhusan Das
Publisher: Springer
ISBN: 9811333173
Category : Technology & Engineering
Languages : en
Pages : 883
Book Description
This book presents select proceedings of the International Conference on Sustainable Construction and Building Materials (ICSCBM 2018), and examines a range of durable, energy-efficient, and next-generation construction and building materials produced from industrial wastes and byproducts. The topics covered include alternative, eco-friendly construction and building materials, next-generation concretes, energy efficiency in construction, and sustainability in construction project management. The book also discusses various properties and performance attributes of modern-age concretes including their durability, workability, and carbon footprint. As such, it offers a valuable reference for beginners, researchers, and professionals interested in sustainable construction and allied fields.
Publisher: Springer
ISBN: 9811333173
Category : Technology & Engineering
Languages : en
Pages : 883
Book Description
This book presents select proceedings of the International Conference on Sustainable Construction and Building Materials (ICSCBM 2018), and examines a range of durable, energy-efficient, and next-generation construction and building materials produced from industrial wastes and byproducts. The topics covered include alternative, eco-friendly construction and building materials, next-generation concretes, energy efficiency in construction, and sustainability in construction project management. The book also discusses various properties and performance attributes of modern-age concretes including their durability, workability, and carbon footprint. As such, it offers a valuable reference for beginners, researchers, and professionals interested in sustainable construction and allied fields.
Recent Advances in Transportation Systems Engineering and Management
Author: M. V. L. R. Anjaneyulu
Publisher: Springer Nature
ISBN: 981192273X
Category : Technology & Engineering
Languages : en
Pages : 903
Book Description
The book presents the select proceedings of the 8th International Conference on Transportation Systems Engineering and Management (CTSEM 2021). The book covers topics pertaining to three broad areas of transportation engineering, namely Transportation Planning, Traffic Engineering and Pavement Technology. The topics covered include transportation and land use, urban and regional transportation planning, travel behavior modeling, travel demand analysis, forecasting and management, transportation and ICT, public transport planning and management, freight transport, traffic flow modeling and management, highway design and maintenance, capacity and level of service, traffic crashes and safety, ITS and applications, non-motorized transportation, transportation economics and policy, road and parking pricing, pedestrian facilities and safety, road asset management, pavement materials and characterization, pavement design and construction, pavement evaluation and management, transportation infrastructure financing, innovative trends in transportation systems, sustainable transportation, smart cities, resilience of transportation systems and environmental and ecological aspects. This book will be useful for the students, researchers and the professionals in the area of civil engineering, especially transportation and traffic engineering.
Publisher: Springer Nature
ISBN: 981192273X
Category : Technology & Engineering
Languages : en
Pages : 903
Book Description
The book presents the select proceedings of the 8th International Conference on Transportation Systems Engineering and Management (CTSEM 2021). The book covers topics pertaining to three broad areas of transportation engineering, namely Transportation Planning, Traffic Engineering and Pavement Technology. The topics covered include transportation and land use, urban and regional transportation planning, travel behavior modeling, travel demand analysis, forecasting and management, transportation and ICT, public transport planning and management, freight transport, traffic flow modeling and management, highway design and maintenance, capacity and level of service, traffic crashes and safety, ITS and applications, non-motorized transportation, transportation economics and policy, road and parking pricing, pedestrian facilities and safety, road asset management, pavement materials and characterization, pavement design and construction, pavement evaluation and management, transportation infrastructure financing, innovative trends in transportation systems, sustainable transportation, smart cities, resilience of transportation systems and environmental and ecological aspects. This book will be useful for the students, researchers and the professionals in the area of civil engineering, especially transportation and traffic engineering.
Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE)
Author: Marco Pasetto
Publisher: Springer Nature
ISBN: 3030297799
Category : Science
Languages : en
Pages : 507
Book Description
This volume highlights the latest advances, innovations, and applications in the field of asphalt pavement technology, as presented by leading international researchers and engineers at the 5th International Symposium on Asphalt Pavements & Environment (ISAP 2019 APE Symposium), held in Padua, Italy on September 11-13, 2019. It covers a diverse range of topics concerning materials and technologies for asphalt pavements, designed for sustainability and environmental compatibility: sustainable pavement materials, marginal materials for asphalt pavements, pavement structures, testing methods and performance, maintenance and management methods, urban heat island mitigation, energy harvesting, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
Publisher: Springer Nature
ISBN: 3030297799
Category : Science
Languages : en
Pages : 507
Book Description
This volume highlights the latest advances, innovations, and applications in the field of asphalt pavement technology, as presented by leading international researchers and engineers at the 5th International Symposium on Asphalt Pavements & Environment (ISAP 2019 APE Symposium), held in Padua, Italy on September 11-13, 2019. It covers a diverse range of topics concerning materials and technologies for asphalt pavements, designed for sustainability and environmental compatibility: sustainable pavement materials, marginal materials for asphalt pavements, pavement structures, testing methods and performance, maintenance and management methods, urban heat island mitigation, energy harvesting, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
Bio-aggregates Based Building Materials
Author: Sofiane Amziane
Publisher: Springer
ISBN: 9402410317
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
The work of the RILEM Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. It considered the question whether building materials containing as main raw material recyclable and easily available plant particles are renewable. This book includes a state-of-the-art report and an appendix. The state-of-the-art report relates to the description of vegetal aggregates. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed. The appendix is a TC report which presents the experience of a working group. The goal was to define testing methods for the measurement of water absorption, bulk density, particle size distribution, and thermal conductivity of bio aggregates. The work is based on a first round robin test of the TC-BBM where the protocols in use by the different laboratories (labs) are compared. p>
Publisher: Springer
ISBN: 9402410317
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
The work of the RILEM Technical Committee (TC -236 BBM) was dedicated to the study of construction materials made from plant particles. It considered the question whether building materials containing as main raw material recyclable and easily available plant particles are renewable. This book includes a state-of-the-art report and an appendix. The state-of-the-art report relates to the description of vegetal aggregates. Then, hygrothermal properties, fire resistance, durability and finally the impact of the variability of the method of production of bio-based concrete are assessed. The appendix is a TC report which presents the experience of a working group. The goal was to define testing methods for the measurement of water absorption, bulk density, particle size distribution, and thermal conductivity of bio aggregates. The work is based on a first round robin test of the TC-BBM where the protocols in use by the different laboratories (labs) are compared. p>