Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22

Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22 PDF Author: R. B. Rebak
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description
The susceptibility or Alloy 22 (N06022) to crevice corrosion may depend on environmental or external factors and metallurgical or internal factors. Some of the most important environmental factors are chloride concentration, inhibitors, temperature and potential. The presence of a weld seam or second phase precipitation in the alloy are classified as internal factors. The localized corrosion resistance of Alloy 22 has been extensively investigated in the last five years, however not all affecting factors were considered in the studies. This paper discusses the current findings regarding the effect of many of these variables on the susceptibility (or resistance) of Alloy 22 to crevice corrosion. The effect of variables such as temperature, chloride concentration and nitrate are rather well understood. However there are only limited or no data regarding effect of other factors such as pH, other inhibitive or deleterious species and type of crevicing material and crevice geometry. There are contradictory results regarding the effect of metallurgical factors such as solution heat treatment.

Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22

Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22 PDF Author: R. B. Rebak
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description
The susceptibility or Alloy 22 (N06022) to crevice corrosion may depend on environmental or external factors and metallurgical or internal factors. Some of the most important environmental factors are chloride concentration, inhibitors, temperature and potential. The presence of a weld seam or second phase precipitation in the alloy are classified as internal factors. The localized corrosion resistance of Alloy 22 has been extensively investigated in the last five years, however not all affecting factors were considered in the studies. This paper discusses the current findings regarding the effect of many of these variables on the susceptibility (or resistance) of Alloy 22 to crevice corrosion. The effect of variables such as temperature, chloride concentration and nitrate are rather well understood. However there are only limited or no data regarding effect of other factors such as pH, other inhibitive or deleterious species and type of crevicing material and crevice geometry. There are contradictory results regarding the effect of metallurgical factors such as solution heat treatment.

Crevice Corrosion Susceptibility of Alloy 22 in Fluoride and Chloride Containing Solutions

Crevice Corrosion Susceptibility of Alloy 22 in Fluoride and Chloride Containing Solutions PDF Author: S. D. Day
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Alloy 22 (N06022) is highly resistant to crevice corrosion in pure chloride (Cl{sup -}) solutions. Little research has been conducted to explore the resistance of this alloy to other halides such as fluoride (F{sup -}) and bromide (Br{sup -}). Even less information is available exploring the behavior of localized corrosion for Alloy 22 in mixtures of the halide ions. Standard electrochemical tests such as polarization resistance and cyclic potentiodynamic polarization (CPP), were conducted to explore the resistance to corrosion of Alloy 22 in deaerated aqueous solutions of 1 M NaCl, 1 M NaF and 0.5 M NaCl + 0.5 M NaF solutions at 60 C and 90 C. Results show that the general corrosion rate was the lowest in the mixed halide solution and the highest in the pure chloride solution. Alloy 22 was not susceptible to localized corrosion in the pure fluoride solution. In 1 M NaCl solution, Alloy 22 was susceptible to crevice corrosion at 90 C. In the mixed halide solution Alloy 22 was susceptible to crevice corrosion both at 60 C and 90 C.

Crevice Repassivation Potentials for Alloy 22 in Simulated Concentrated Ground Waters

Crevice Repassivation Potentials for Alloy 22 in Simulated Concentrated Ground Waters PDF Author: K. J. Evans
Publisher:
ISBN:
Category :
Languages : en
Pages : 19

Get Book Here

Book Description
The resistance of Alloy 22 (N06022) to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. However, the behavior of Alloy 22 in concentrated aqueous solutions that may simulate concentrated ground waters was not fully understood. Systematic electrochemical tests using cyclic potentiodynamic polarization as well as the Tsujikawa-Hisamatsu electrochemical method were performed to determine the crevice corrosion susceptibility of Alloy 22 in simulated concentrated water (SCW), simulated acidified water (SAW) and basic saturated water (BSW). Results show that Alloy 22 is immune to crevice corrosion in SCW and SAW but may suffer crevice corrosion initiation in BSW. Results also show that in a naturally aerated environment, the corrosion potential would never reach the critical potential for crevice corrosion initiation.

Corrosion Issues in Nuclear Waste Storage: A Symposium in Honor of the 65th Birthday of David Shoesmith

Corrosion Issues in Nuclear Waste Storage: A Symposium in Honor of the 65th Birthday of David Shoesmith PDF Author: J. J. Noël
Publisher: The Electrochemical Society
ISBN: 1566778816
Category : Science
Languages : en
Pages : 43

Get Book Here

Book Description
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Corrosion Issues in Nuclear Waste Storage: A Symposium in Honor of the 65th Birthday of David Shoesmith¿, held during the 218th meeting of The Electrochemical Society, in Las Vegas, Nevada from October 10 to 15, 2010.

Lettre du trésorier de la Confrairie, Capmartin, du 6 Décembre 1762, annonçant l'envoi d'un plan de réglement à chacun des confrères, en exécution de la délibération de l'Assemblée générale tenue à Toulouse le 31 mai 1761.

Lettre du trésorier de la Confrairie, Capmartin, du 6 Décembre 1762, annonçant l'envoi d'un plan de réglement à chacun des confrères, en exécution de la délibération de l'Assemblée générale tenue à Toulouse le 31 mai 1761. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Get Book Here

Book Description


Uhlig's Corrosion Handbook

Uhlig's Corrosion Handbook PDF Author: R. Winston Revie
Publisher: John Wiley & Sons
ISBN: 0470080329
Category : Technology & Engineering
Languages : en
Pages : 1299

Get Book Here

Book Description
This book serves as a reference for engineers, scientists, and students concerned with the use of materials in applications where reliability and resistance to corrosion are important. It updates the coverage of its predecessor, including coverage of: corrosion rates of steel in major river systems and atmospheric corrosion rates, the corrosion behavior of materials such as weathering steels and newer stainless alloys, and the corrosion behavior and engineering approaches to corrosion control for nonmetallic materials. New chapters include: high-temperature oxidation of metals and alloys, nanomaterials, and dental materials, anodic protection. Also featured are chapters dealing with standards for corrosion testing, microbiological corrosion, and electrochemical noise.

Localized Corrosion of Alloy 22 -Fabrication Effects-

Localized Corrosion of Alloy 22 -Fabrication Effects- PDF Author: R. B. Rebak
Publisher:
ISBN:
Category :
Languages : en
Pages : 81

Get Book Here

Book Description
This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation: When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container: Alloy 22 has been extensively tested for general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale: The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo) alloys such as Alloy 22 (N06022) and Alloy 686 (N06686). For example, the content of Mo is specified from 12.5 to 14.5 weight percent for Alloy 22 and from 15.0 to 17.0 weight percent for Alloy 686. It was important to determine how the corrosion rate of welded plates of Alloy 22 using Alloy 686 weld filler metal would change if heats of these alloys were prepared using several variations in the composition of the elements even though still in the range specified in B 575. All the material used in this report were especially prepared at Allegheny Ludlum Co. Seven heats of plate were welded with seven heats of wire. Immersion corrosion tests were conducted in a boiling solution of sulfuric acid plus ferric sulfate (ASTM G 28 A) using both as-welded (ASW) coupons and solution heat-treated (SHT) coupons. Results show that the corrosion rate was not affected by the chemistry of the materials within the range of the standards.

Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report PDF Author: R. B. Rebak
Publisher:
ISBN:
Category :
Languages : en
Pages : 81

Get Book Here

Book Description
This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation--When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container--Alloy 22 has been extensively tested for general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale--The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo) alloys such as Alloy 22 (N06022) and Alloy 686 (N06686). For example, the content of Mo is specified from 12.5 to 14.5 weight percent for Alloy 22 and from 15.0 to 17.0 weight percent for Alloy 686. It was important to determine how the corrosion rate of welded plates of Alloy 22 using Alloy 686 weld filler metal would change if heats of these alloys were prepared using several variations in the composition of the elements even though still in the range specified in B 575. All the material used in this report were especially prepared at Allegheny Ludlum Co. Seven heats of plate were welded with seven heats of wire. Immersion corrosion tests were conducted in a boiling solution of sulfuric acid plus ferric sulfate (ASTM G 28 A) using both as-welded (ASW) coupons and solution heat-treated (SHT) coupons.

Inhibition of Chloride Induced Crevice Corrosion in Alloy 22 by Fluoride Ions

Inhibition of Chloride Induced Crevice Corrosion in Alloy 22 by Fluoride Ions PDF Author: R. B. Rebak
Publisher:
ISBN:
Category :
Languages : en
Pages : 19

Get Book Here

Book Description
Alloy 22 (N06022) is highly resistant to localized corrosion. Alloy 22 may be susceptible to crevice corrosion in pure chloride (Cl{sup -}) solutions under aggressive environmental conditions. The effect of the fluoride (F{sup -}) over the crevice corrosion induced by chloride ions is still not well established. The objective of the present work was to explore the crevice corrosion resistance of this alloy to different mixtures of fluorides and chlorides. Cyclic potentiodynamic polarization (CPP) tests were conducted in deaerated aqueous solutions of pure halide ions and also in different mixtures of chloride and fluoride at 90 C and pH 6. The range of chloride concentration [Cl{sup -}] was 0.001 M {le} [Cl{sup -}] {le} 1 M and the range of molar fluoride to chloride ratio [F{sup -}]/[Cl{sup -}] was 0.1 {le} [F{sup -}]/[Cl{sup -}] {le} 10. Results showed that Alloy 22 was susceptible to crevice corrosion in all the pure chloride solutions but not in the pure fluoride solutions. Fluoride ions showed an inhibitor behavior only in mixtures with a molar ratio [F{sup -}]/[Cl{sup -}]> 2. For mixtures with a molar ratio [F{sup -}]/[Cl{sup -}] of 7 and 10 the inhibition of crevice corrosion was complete.

Localized Corrosion

Localized Corrosion PDF Author: Fumio Hine
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 248

Get Book Here

Book Description