Author: Martin A. Guest
Publisher: OUP Oxford
ISBN: 0191606960
Category : Mathematics
Languages : en
Pages : 336
Book Description
Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.
From Quantum Cohomology to Integrable Systems
Author: Martin A. Guest
Publisher: OUP Oxford
ISBN: 0191606960
Category : Mathematics
Languages : en
Pages : 336
Book Description
Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.
Publisher: OUP Oxford
ISBN: 0191606960
Category : Mathematics
Languages : en
Pages : 336
Book Description
Quantum cohomology has its origins in symplectic geometry and algebraic geometry, but is deeply related to differential equations and integrable systems. This text explains what is behind the extraordinary success of quantum cohomology, leading to its connections with many existing areas of mathematics as well as its appearance in new areas such as mirror symmetry. Certain kinds of differential equations (or D-modules) provide the key links between quantum cohomology and traditional mathematics; these links are the main focus of the book, and quantum cohomology and other integrable PDEs such as the KdV equation and the harmonic map equation are discussed within this unified framework. Aimed at graduate students in mathematics who want to learn about quantum cohomology in a broad context, and theoretical physicists who are interested in the mathematical setting, the text assumes basic familiarity with differential equations and cohomology.
Differential Geometry and Integrable Systems
Author: Martin A. Guest
Publisher: American Mathematical Soc.
ISBN: 0821829386
Category : Mathematics
Languages : en
Pages : 370
Book Description
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced byintegrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generallyreveals previously unnoticed symmetries and can lead to surprisingly explicit solutions. Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and willserve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference also available from the AMS is Integrable Systems,Topology, and Physics, Volume 309 CONM/309in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.
Publisher: American Mathematical Soc.
ISBN: 0821829386
Category : Mathematics
Languages : en
Pages : 370
Book Description
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced byintegrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generallyreveals previously unnoticed symmetries and can lead to surprisingly explicit solutions. Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and willserve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference also available from the AMS is Integrable Systems,Topology, and Physics, Volume 309 CONM/309in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.
Operator Theory, Systems Theory and Scattering Theory: Multidimensional Generalizations
Author: Daniel Alpay
Publisher: Springer Science & Business Media
ISBN: 9783764372125
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume contains a selection of papers, from experts in the area, on multidimensional operator theory. Topics considered include the non-commutative case, function theory in the polydisk, hyponormal operators, hyperanalytic functions, and holomorphic deformations of linear differential equations. Operator Theory, Systems Theory and Scattering Theory will be of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
Publisher: Springer Science & Business Media
ISBN: 9783764372125
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume contains a selection of papers, from experts in the area, on multidimensional operator theory. Topics considered include the non-commutative case, function theory in the polydisk, hyponormal operators, hyperanalytic functions, and holomorphic deformations of linear differential equations. Operator Theory, Systems Theory and Scattering Theory will be of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
Integrable And Superintegrable Systems
Author: Boris A Kuperschmidt
Publisher: World Scientific
ISBN: 9814506737
Category : Science
Languages : en
Pages : 399
Book Description
Some of the most active practitioners in the field of integrable systems have been asked to describe what they think of as the problems and results which seem to be most interesting and important now and are likely to influence future directions. The papers in this collection, representing their authors' responses, offer a broad panorama of the subject as it enters the 1990's.
Publisher: World Scientific
ISBN: 9814506737
Category : Science
Languages : en
Pages : 399
Book Description
Some of the most active practitioners in the field of integrable systems have been asked to describe what they think of as the problems and results which seem to be most interesting and important now and are likely to influence future directions. The papers in this collection, representing their authors' responses, offer a broad panorama of the subject as it enters the 1990's.
Form Factors In Completely Integrable Models Of Quantum Field Theory
Author: F A Smirnov
Publisher: World Scientific
ISBN: 9814506907
Category : Science
Languages : en
Pages : 224
Book Description
The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.
Publisher: World Scientific
ISBN: 9814506907
Category : Science
Languages : en
Pages : 224
Book Description
The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.
Algebraic Structures In Integrability: Foreword By Victor Kac
Author: Vladimir V Sokolov
Publisher: World Scientific
ISBN: 9811219664
Category : Science
Languages : en
Pages : 346
Book Description
Relationships of the theory of integrable systems with various branches of mathematics are extremely deep and diverse. On the other hand, the most fundamental exactly integrable systems often have applications in theoretical physics. Therefore, many mathematicians and physicists are interested in integrable models.The book is intelligible to graduate and PhD students and can serve as an introduction to separate sections of the theory of classical integrable systems for scientists with algebraic inclinations. For the young, the book can serve as a starting point in the study of various aspects of integrability, while professional algebraists will be able to use some examples of algebraic structures, which appear in the theory of integrable systems, for wide-ranging generalizations.The statements are formulated in the simplest possible form. However, some ways of generalization are indicated. In the proofs, only essential points are mentioned, while for technical details, references are provided. The focus is on carefully selected examples. In addition, the book proposes many unsolved problems of various levels of complexity. A deeper understanding of every chapter of the book may require the study of more rigorous and specialized literature.
Publisher: World Scientific
ISBN: 9811219664
Category : Science
Languages : en
Pages : 346
Book Description
Relationships of the theory of integrable systems with various branches of mathematics are extremely deep and diverse. On the other hand, the most fundamental exactly integrable systems often have applications in theoretical physics. Therefore, many mathematicians and physicists are interested in integrable models.The book is intelligible to graduate and PhD students and can serve as an introduction to separate sections of the theory of classical integrable systems for scientists with algebraic inclinations. For the young, the book can serve as a starting point in the study of various aspects of integrability, while professional algebraists will be able to use some examples of algebraic structures, which appear in the theory of integrable systems, for wide-ranging generalizations.The statements are formulated in the simplest possible form. However, some ways of generalization are indicated. In the proofs, only essential points are mentioned, while for technical details, references are provided. The focus is on carefully selected examples. In addition, the book proposes many unsolved problems of various levels of complexity. A deeper understanding of every chapter of the book may require the study of more rigorous and specialized literature.
New Trends in Quantum Integrable Systems
Author: Boris Feigin
Publisher: World Scientific
ISBN: 9814324361
Category : Mathematics
Languages : en
Pages : 517
Book Description
The present volume is the result of the international workshop on New Trends in Quantum Integrable Systems that was held in Kyoto, Japan, from 27 to 31 July 2009. As a continuation of the RIMS Research Project "Method of Algebraic Analysis in Integrable Systems" in 2004, the workshop's aim was to cover exciting new developments that have emerged during the recent years. Collected here are research articles based on the talks presented at the workshop, including the latest results obtained thereafter. The subjects discussed range across diverse areas such as correlation functions of solvable models, integrable models in quantum field theory, conformal field theory, mathematical aspects of Bethe ansatz, special functions and integrable differential/difference equations, representation theory of infinite dimensional algebras, integrable models and combinatorics. Through these topics, the reader is exposed to the most recent developments in the field of quantum integrable systems and related areas of mathematical physics.
Publisher: World Scientific
ISBN: 9814324361
Category : Mathematics
Languages : en
Pages : 517
Book Description
The present volume is the result of the international workshop on New Trends in Quantum Integrable Systems that was held in Kyoto, Japan, from 27 to 31 July 2009. As a continuation of the RIMS Research Project "Method of Algebraic Analysis in Integrable Systems" in 2004, the workshop's aim was to cover exciting new developments that have emerged during the recent years. Collected here are research articles based on the talks presented at the workshop, including the latest results obtained thereafter. The subjects discussed range across diverse areas such as correlation functions of solvable models, integrable models in quantum field theory, conformal field theory, mathematical aspects of Bethe ansatz, special functions and integrable differential/difference equations, representation theory of infinite dimensional algebras, integrable models and combinatorics. Through these topics, the reader is exposed to the most recent developments in the field of quantum integrable systems and related areas of mathematical physics.
Integrable and Superintegrable Systems
Author: Boris A. Kupershmidt
Publisher: World Scientific
ISBN: 9789810203160
Category : Mathematics
Languages : en
Pages : 402
Book Description
Some of the most active practitioners in the field of integrable systems have been asked to describe what they think of as the problems and results which seem to be most interesting and important now and are likely to influence future directions. The papers in this collection, representing their authors' responses, offer a broad panorama of the subject as it enters the 1990's.
Publisher: World Scientific
ISBN: 9789810203160
Category : Mathematics
Languages : en
Pages : 402
Book Description
Some of the most active practitioners in the field of integrable systems have been asked to describe what they think of as the problems and results which seem to be most interesting and important now and are likely to influence future directions. The papers in this collection, representing their authors' responses, offer a broad panorama of the subject as it enters the 1990's.
Algebraic Aspects of Integrable Systems
Author: A.S. Fokas
Publisher: Springer Science & Business Media
ISBN: 1461224349
Category : Mathematics
Languages : en
Pages : 352
Book Description
A collection of articles in memory of Irene Dorfman and her research in mathematical physics. Among the topics covered are: the Hamiltonian and bi-Hamiltonian nature of continuous and discrete integrable equations; the t-function construction; the r-matrix formulation of integrable systems; pseudo-differential operators and modular forms; master symmetries and the Bocher theorem; asymptotic integrability; the integrability of the equations of associativity; invariance under Laplace-darboux transformations; trace formulae of the Dirac and Schrodinger periodic operators; and certain canonical 1-forms.
Publisher: Springer Science & Business Media
ISBN: 1461224349
Category : Mathematics
Languages : en
Pages : 352
Book Description
A collection of articles in memory of Irene Dorfman and her research in mathematical physics. Among the topics covered are: the Hamiltonian and bi-Hamiltonian nature of continuous and discrete integrable equations; the t-function construction; the r-matrix formulation of integrable systems; pseudo-differential operators and modular forms; master symmetries and the Bocher theorem; asymptotic integrability; the integrability of the equations of associativity; invariance under Laplace-darboux transformations; trace formulae of the Dirac and Schrodinger periodic operators; and certain canonical 1-forms.
Recent Advances in Operator Theory and Its Applications
Author: Israel Gohberg
Publisher: Springer Science & Business Media
ISBN: 9783764372903
Category : Mathematics
Languages : en
Pages : 496
Book Description
This book contains a selection of carefully refereed research papers, most of which were presented at the fourteenth International Workshop on Operator Theory and its Applications (IWOTA), held at Cagliari, Italy, from June 24-27, 2003. The papers, many of which have been written by leading experts in the field, concern a wide variety of topics in modern operator theory and applications, with emphasis on differential operators and numerical methods. The book will be of interest to a wide audience of pure and applied mathematicians and engineers.
Publisher: Springer Science & Business Media
ISBN: 9783764372903
Category : Mathematics
Languages : en
Pages : 496
Book Description
This book contains a selection of carefully refereed research papers, most of which were presented at the fourteenth International Workshop on Operator Theory and its Applications (IWOTA), held at Cagliari, Italy, from June 24-27, 2003. The papers, many of which have been written by leading experts in the field, concern a wide variety of topics in modern operator theory and applications, with emphasis on differential operators and numerical methods. The book will be of interest to a wide audience of pure and applied mathematicians and engineers.