Extrinsic Geometry of Convex Surfaces

Extrinsic Geometry of Convex Surfaces PDF Author: Alekseĭ Vasilʹevich Pogorelov
Publisher: American Mathematical Soc.
ISBN: 9780821886618
Category : Mathematics
Languages : en
Pages : 680

Get Book Here

Book Description

Extrinsic Geometry of Convex Surfaces

Extrinsic Geometry of Convex Surfaces PDF Author: Alekseĭ Vasilʹevich Pogorelov
Publisher: American Mathematical Soc.
ISBN: 9780821886618
Category : Mathematics
Languages : en
Pages : 680

Get Book Here

Book Description


Convex Surfaces

Convex Surfaces PDF Author: Herbert Busemann
Publisher: Courier Corporation
ISBN: 0486154998
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
This exploration of convex surfaces focuses on extrinsic geometry and applications of the Brunn-Minkowski theory. It also examines intrinsic geometry and the realization of intrinsic metrics. 1958 edition.

Extrinsic Geometry of Convex Surfaces

Extrinsic Geometry of Convex Surfaces PDF Author: A. V. Pogorelov
Publisher:
ISBN: 9780706512618
Category : Convex surfaces
Languages : en
Pages : 669

Get Book Here

Book Description


Extrinsic Geometry of Convex Surfaces

Extrinsic Geometry of Convex Surfaces PDF Author: Alekseĭ Vasilʹevich Pogorelov
Publisher:
ISBN: 9781470444501
Category : Convex surfaces
Languages : en
Pages : 677

Get Book Here

Book Description


Differential Geometry of Curves and Surfaces

Differential Geometry of Curves and Surfaces PDF Author: Victor Andreevich Toponogov
Publisher: Springer Science & Business Media
ISBN: 0817644024
Category : Mathematics
Languages : en
Pages : 215

Get Book Here

Book Description
Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels

Geometry III

Geometry III PDF Author: Yu.D. Burago
Publisher: Springer Science & Business Media
ISBN: 3662027518
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
A volume devoted to the extremely clear and intrinsically beautiful theory of two-dimensional surfaces in Euclidean spaces. The main focus is on the connection between the theory of embedded surfaces and two-dimensional Riemannian geometry, and the influence of properties of intrinsic metrics on the geometry of surfaces.

Curves and Surfaces

Curves and Surfaces PDF Author: Sebastián Montiel
Publisher: American Mathematical Soc.
ISBN: 0821847635
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
Offers a focused point of view on the differential geometry of curves and surfaces. This monograph treats the Gauss - Bonnet theorem and discusses the Euler characteristic. It also covers Alexandrov's theorem on embedded compact surfaces in R3 with constant mean curvature.

An Invitation to Alexandrov Geometry

An Invitation to Alexandrov Geometry PDF Author: Stephanie Alexander
Publisher: Springer
ISBN: 3030053121
Category : Mathematics
Languages : en
Pages : 95

Get Book Here

Book Description
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.

Handbook of Convex Geometry

Handbook of Convex Geometry PDF Author: Bozzano G Luisa
Publisher: Elsevier
ISBN: 0080934390
Category : Mathematics
Languages : en
Pages : 803

Get Book Here

Book Description
Handbook of Convex Geometry, Volume A offers a survey of convex geometry and its many ramifications and relations with other areas of mathematics, including convexity, geometric inequalities, and convex sets. The selection first offers information on the history of convexity, characterizations of convex sets, and mixed volumes. Topics include elementary convexity, equality in the Aleksandrov-Fenchel inequality, mixed surface area measures, characteristic properties of convex sets in analysis and differential geometry, and extensions of the notion of a convex set. The text then reviews the standard isoperimetric theorem and stability of geometric inequalities. The manuscript takes a look at selected affine isoperimetric inequalities, extremum problems for convex discs and polyhedra, and rigidity. Discussions focus on include infinitesimal and static rigidity related to surfaces, isoperimetric problem for convex polyhedral, bounds for the volume of a convex polyhedron, curvature image inequality, Busemann intersection inequality and its relatives, and Petty projection inequality. The book then tackles geometric algorithms, convexity and discrete optimization, mathematical programming and convex geometry, and the combinatorial aspects of convex polytopes. The selection is a valuable source of data for mathematicians and researchers interested in convex geometry.

Lectures on Classical Differential Geometry

Lectures on Classical Differential Geometry PDF Author: Dirk J. Struik
Publisher: Courier Corporation
ISBN: 0486138186
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.