Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 224
Book Description
Canadian Journal of Mathematics
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 224
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 224
Book Description
Weighted Sobolev Spaces
Author: Alois Kufner
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 130
Book Description
A systematic account of the subject, this book deals with properties and applications of the Sobolev spaces with weights, the weight function being dependent on the distance of a point of the definition domain from the boundary of the domain or from its parts. After an introduction of definitions, examples and auxilliary results, it describes the study of properties of Sobolev spaces with power-type weights, and analogous problems for weights of a more general type. The concluding chapter addresses applications of weighted spaces to the solution of the Dirichlet problem for an elliptic linear differential operator.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 130
Book Description
A systematic account of the subject, this book deals with properties and applications of the Sobolev spaces with weights, the weight function being dependent on the distance of a point of the definition domain from the boundary of the domain or from its parts. After an introduction of definitions, examples and auxilliary results, it describes the study of properties of Sobolev spaces with power-type weights, and analogous problems for weights of a more general type. The concluding chapter addresses applications of weighted spaces to the solution of the Dirichlet problem for an elliptic linear differential operator.
Indiana University Mathematics Journal
Author: Indiana University. Department of Mathematics
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 764
Book Description
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 764
Book Description
Nonlinear Potential Theory and Weighted Sobolev Spaces
Author: Bengt O. Turesson
Publisher: Springer
ISBN: 3540451684
Category : Mathematics
Languages : en
Pages : 188
Book Description
The book systematically develops the nonlinear potential theory connected with the weighted Sobolev spaces, where the weight usually belongs to Muckenhoupt's class of Ap weights. These spaces occur as solutions spaces for degenerate elliptic partial differential equations. The Sobolev space theory covers results concerning approximation, extension, and interpolation, Sobolev and Poincaré inequalities, Maz'ya type embedding theorems, and isoperimetric inequalities. In the chapter devoted to potential theory, several weighted capacities are investigated. Moreover, "Kellogg lemmas" are established for various concepts of thinness. Applications of potential theory to weighted Sobolev spaces include quasi continuity of Sobolev functions, Poincaré inequalities, and spectral synthesis theorems.
Publisher: Springer
ISBN: 3540451684
Category : Mathematics
Languages : en
Pages : 188
Book Description
The book systematically develops the nonlinear potential theory connected with the weighted Sobolev spaces, where the weight usually belongs to Muckenhoupt's class of Ap weights. These spaces occur as solutions spaces for degenerate elliptic partial differential equations. The Sobolev space theory covers results concerning approximation, extension, and interpolation, Sobolev and Poincaré inequalities, Maz'ya type embedding theorems, and isoperimetric inequalities. In the chapter devoted to potential theory, several weighted capacities are investigated. Moreover, "Kellogg lemmas" are established for various concepts of thinness. Applications of potential theory to weighted Sobolev spaces include quasi continuity of Sobolev functions, Poincaré inequalities, and spectral synthesis theorems.
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 902
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 902
Book Description
Sobolev Spaces on Metric Measure Spaces
Author: Juha Heinonen
Publisher: Cambridge University Press
ISBN: 1107092345
Category : Mathematics
Languages : en
Pages : 447
Book Description
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
Publisher: Cambridge University Press
ISBN: 1107092345
Category : Mathematics
Languages : en
Pages : 447
Book Description
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
Sobolev Spaces in Mathematics I
Author: Vladimir Maz'ya
Publisher: Springer Science & Business Media
ISBN: 038785648X
Category : Mathematics
Languages : en
Pages : 395
Book Description
This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.
Publisher: Springer Science & Business Media
ISBN: 038785648X
Category : Mathematics
Languages : en
Pages : 395
Book Description
This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.
Multi-Layer Potentials and Boundary Problems
Author: Irina Mitrea
Publisher: Springer
ISBN: 3642326668
Category : Mathematics
Languages : en
Pages : 430
Book Description
Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney–Lebesque spaces, Whitney–Besov spaces, Whitney–Sobolev- based Lebesgue spaces, Whitney–Triebel–Lizorkin spaces,Whitney–Sobolev-based Hardy spaces, Whitney–BMO and Whitney–VMO spaces.
Publisher: Springer
ISBN: 3642326668
Category : Mathematics
Languages : en
Pages : 430
Book Description
Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney–Lebesque spaces, Whitney–Besov spaces, Whitney–Sobolev- based Lebesgue spaces, Whitney–Triebel–Lizorkin spaces,Whitney–Sobolev-based Hardy spaces, Whitney–BMO and Whitney–VMO spaces.
Recent Advances in Fourier Analysis and Its Applications
Author: J.S. Byrnes
Publisher: Springer Science & Business Media
ISBN: 940090665X
Category : Mathematics
Languages : en
Pages : 675
Book Description
This volume contains papers presented at the July, 1989 NATO Advanced Study Institute on Fourier Analysis and its Applications. The conference, held at the beautiful II Ciocco resort near Lucca, in the glorious Tuscany region of northern Italy, created a dynamic in teraction between world-renowned scientists working in the usually disparate communities of pure and applied Fourier analysts. The papers to be found herein include important new results in x-ray crystallography by Nobel Laureate Herbert Hauptman, the application of the new concept of bispectrum to system identification by renowned probabilist Athanasios Papoulis, fascinating appli cations of number theory in Fourier analysis by eminent electrical engineer Manfred R. Schroeder, and exciting concepts regarding polynomials with restricted coefficients by foremost mathematical problem solver Donald J. Newman. The remaining papers further illustrate the inherent power and beauty of classical Fourier analysis, whether the results presented were sought as an end in themselves, or whether these classical methods were employed as a tool in illustrating and solving a particular applied problem. From antenna design to concert hall acoustics to image and speech processing to unimodular polynomi als, each conference participant benefited significantly from his or her exposure, in many cases for the first time, to those scientists on the other end of the spectrum from them selves. The purpose of this volume is to pass those benefits on to the reader.
Publisher: Springer Science & Business Media
ISBN: 940090665X
Category : Mathematics
Languages : en
Pages : 675
Book Description
This volume contains papers presented at the July, 1989 NATO Advanced Study Institute on Fourier Analysis and its Applications. The conference, held at the beautiful II Ciocco resort near Lucca, in the glorious Tuscany region of northern Italy, created a dynamic in teraction between world-renowned scientists working in the usually disparate communities of pure and applied Fourier analysts. The papers to be found herein include important new results in x-ray crystallography by Nobel Laureate Herbert Hauptman, the application of the new concept of bispectrum to system identification by renowned probabilist Athanasios Papoulis, fascinating appli cations of number theory in Fourier analysis by eminent electrical engineer Manfred R. Schroeder, and exciting concepts regarding polynomials with restricted coefficients by foremost mathematical problem solver Donald J. Newman. The remaining papers further illustrate the inherent power and beauty of classical Fourier analysis, whether the results presented were sought as an end in themselves, or whether these classical methods were employed as a tool in illustrating and solving a particular applied problem. From antenna design to concert hall acoustics to image and speech processing to unimodular polynomi als, each conference participant benefited significantly from his or her exposure, in many cases for the first time, to those scientists on the other end of the spectrum from them selves. The purpose of this volume is to pass those benefits on to the reader.
Introduction to Global Variational Geometry
Author: Demeter Krupka
Publisher: Elsevier
ISBN: 0080954251
Category : Mathematics
Languages : en
Pages : 529
Book Description
This book provides a comprehensive introduction to modern global variational theory on fibred spaces. It is based on differentiation and integration theory of differential forms on smooth manifolds, and on the concepts of global analysis and geometry such as jet prolongations of manifolds, mappings, and Lie groups. The book will be invaluable for researchers and PhD students in differential geometry, global analysis, differential equations on manifolds, and mathematical physics, and for the readers who wish to undertake further rigorous study in this broad interdisciplinary field. Featured topics- Analysis on manifolds- Differential forms on jet spaces - Global variational functionals- Euler-Lagrange mapping - Helmholtz form and the inverse problem- Symmetries and the Noether's theory of conservation laws- Regularity and the Hamilton theory- Variational sequences - Differential invariants and natural variational principles- First book on the geometric foundations of Lagrange structures- New ideas on global variational functionals - Complete proofs of all theorems - Exact treatment of variational principles in field theory, inc. general relativity- Basic structures and tools: global analysis, smooth manifolds, fibred spaces
Publisher: Elsevier
ISBN: 0080954251
Category : Mathematics
Languages : en
Pages : 529
Book Description
This book provides a comprehensive introduction to modern global variational theory on fibred spaces. It is based on differentiation and integration theory of differential forms on smooth manifolds, and on the concepts of global analysis and geometry such as jet prolongations of manifolds, mappings, and Lie groups. The book will be invaluable for researchers and PhD students in differential geometry, global analysis, differential equations on manifolds, and mathematical physics, and for the readers who wish to undertake further rigorous study in this broad interdisciplinary field. Featured topics- Analysis on manifolds- Differential forms on jet spaces - Global variational functionals- Euler-Lagrange mapping - Helmholtz form and the inverse problem- Symmetries and the Noether's theory of conservation laws- Regularity and the Hamilton theory- Variational sequences - Differential invariants and natural variational principles- First book on the geometric foundations of Lagrange structures- New ideas on global variational functionals - Complete proofs of all theorems - Exact treatment of variational principles in field theory, inc. general relativity- Basic structures and tools: global analysis, smooth manifolds, fibred spaces