Author: Steven Sanderson
Publisher: Packt Publishing Ltd
ISBN: 1804615544
Category : Computers
Languages : en
Pages : 345
Book Description
Seamlessly integrate the Python and R programming languages with spreadsheet-based data analysis to maximize productivity Key Features Perform advanced data analysis and visualization techniques with R and Python on Excel data Use exploratory data analysis and pivot table analysis for deeper insights into your data Integrate R and Python code directly into Excel using VBA or API endpoints Purchase of the print or Kindle book includes a free PDF eBook Book Description– Extending Excel with Python and R is a game changer resource written by experts Steven Sanderson, the author of the healthyverse suite of R packages, and David Kun, co-founder of Functional Analytics. – This comprehensive guide transforms the way you work with spreadsheet-based data by integrating Python and R with Excel to automate tasks, execute statistical analysis, and create powerful visualizations. – Working through the chapters, you’ll find out how to perform exploratory data analysis, time series analysis, and even integrate APIs for maximum efficiency. – Both beginners and experts will get everything you need to unlock Excel's full potential and take your data analysis skills to the next level. – By the end of this book, you’ll be able to import data from Excel, manipulate it in R or Python, and perform the data analysis tasks in your preferred framework while pushing the results back to Excel for sharing with others as needed. What you will learn Read and write Excel files with R and Python libraries Automate Excel tasks with R and Python scripts Use R and Python to execute Excel VBA macros Format Excel sheets using R and Python packages Create graphs with ggplot2 and Matplotlib in Excel Analyze Excel data with statistical methods and time series analysis Explore various methods to call R and Python functions from Excel Who this book is for – If you’re a data analyst or data scientist, or a quants, actuaries, or data practitioner looking to enhance your Excel skills and expand your data analysis capabilities with R and Python, this book is for you. – The comprehensive approach to the topics covered makes it suitable for both beginners and intermediate learners. – A basic understanding of Excel, Python, and R is all you need to get started.
Extending Excel with Python and R
Author: Steven Sanderson
Publisher: Packt Publishing Ltd
ISBN: 1804615544
Category : Computers
Languages : en
Pages : 345
Book Description
Seamlessly integrate the Python and R programming languages with spreadsheet-based data analysis to maximize productivity Key Features Perform advanced data analysis and visualization techniques with R and Python on Excel data Use exploratory data analysis and pivot table analysis for deeper insights into your data Integrate R and Python code directly into Excel using VBA or API endpoints Purchase of the print or Kindle book includes a free PDF eBook Book Description– Extending Excel with Python and R is a game changer resource written by experts Steven Sanderson, the author of the healthyverse suite of R packages, and David Kun, co-founder of Functional Analytics. – This comprehensive guide transforms the way you work with spreadsheet-based data by integrating Python and R with Excel to automate tasks, execute statistical analysis, and create powerful visualizations. – Working through the chapters, you’ll find out how to perform exploratory data analysis, time series analysis, and even integrate APIs for maximum efficiency. – Both beginners and experts will get everything you need to unlock Excel's full potential and take your data analysis skills to the next level. – By the end of this book, you’ll be able to import data from Excel, manipulate it in R or Python, and perform the data analysis tasks in your preferred framework while pushing the results back to Excel for sharing with others as needed. What you will learn Read and write Excel files with R and Python libraries Automate Excel tasks with R and Python scripts Use R and Python to execute Excel VBA macros Format Excel sheets using R and Python packages Create graphs with ggplot2 and Matplotlib in Excel Analyze Excel data with statistical methods and time series analysis Explore various methods to call R and Python functions from Excel Who this book is for – If you’re a data analyst or data scientist, or a quants, actuaries, or data practitioner looking to enhance your Excel skills and expand your data analysis capabilities with R and Python, this book is for you. – The comprehensive approach to the topics covered makes it suitable for both beginners and intermediate learners. – A basic understanding of Excel, Python, and R is all you need to get started.
Publisher: Packt Publishing Ltd
ISBN: 1804615544
Category : Computers
Languages : en
Pages : 345
Book Description
Seamlessly integrate the Python and R programming languages with spreadsheet-based data analysis to maximize productivity Key Features Perform advanced data analysis and visualization techniques with R and Python on Excel data Use exploratory data analysis and pivot table analysis for deeper insights into your data Integrate R and Python code directly into Excel using VBA or API endpoints Purchase of the print or Kindle book includes a free PDF eBook Book Description– Extending Excel with Python and R is a game changer resource written by experts Steven Sanderson, the author of the healthyverse suite of R packages, and David Kun, co-founder of Functional Analytics. – This comprehensive guide transforms the way you work with spreadsheet-based data by integrating Python and R with Excel to automate tasks, execute statistical analysis, and create powerful visualizations. – Working through the chapters, you’ll find out how to perform exploratory data analysis, time series analysis, and even integrate APIs for maximum efficiency. – Both beginners and experts will get everything you need to unlock Excel's full potential and take your data analysis skills to the next level. – By the end of this book, you’ll be able to import data from Excel, manipulate it in R or Python, and perform the data analysis tasks in your preferred framework while pushing the results back to Excel for sharing with others as needed. What you will learn Read and write Excel files with R and Python libraries Automate Excel tasks with R and Python scripts Use R and Python to execute Excel VBA macros Format Excel sheets using R and Python packages Create graphs with ggplot2 and Matplotlib in Excel Analyze Excel data with statistical methods and time series analysis Explore various methods to call R and Python functions from Excel Who this book is for – If you’re a data analyst or data scientist, or a quants, actuaries, or data practitioner looking to enhance your Excel skills and expand your data analysis capabilities with R and Python, this book is for you. – The comprehensive approach to the topics covered makes it suitable for both beginners and intermediate learners. – A basic understanding of Excel, Python, and R is all you need to get started.
Extending Power BI with Python and R
Author: Luca Zavarella
Publisher: Packt Publishing Ltd
ISBN: 1801076677
Category : Computers
Languages : en
Pages : 559
Book Description
Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key FeaturesGet the most out of Python and R with Power BI by implementing non-trivial codeLeverage the toolset of Python and R chunks to inject scripts into your Power BI dashboardsImplement new techniques for ingesting, enriching, and visualizing data with Python and R in Power BIBook Description Python and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages. You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model. By the end of this book, you'll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R. What you will learnDiscover best practices for using Python and R in Power BI productsUse Python and R to perform complex data manipulations in Power BIApply data anonymization and data pseudonymization in Power BILog data and load large datasets in Power BI using Python and REnrich your Power BI dashboards using external APIs and machine learning modelsExtract insights from your data using linear optimization and other algorithmsHandle outliers and missing values for multivariate and time-series dataCreate any visualization, as complex as you want, using R scriptsWho this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful.
Publisher: Packt Publishing Ltd
ISBN: 1801076677
Category : Computers
Languages : en
Pages : 559
Book Description
Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key FeaturesGet the most out of Python and R with Power BI by implementing non-trivial codeLeverage the toolset of Python and R chunks to inject scripts into your Power BI dashboardsImplement new techniques for ingesting, enriching, and visualizing data with Python and R in Power BIBook Description Python and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages. You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model. By the end of this book, you'll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R. What you will learnDiscover best practices for using Python and R in Power BI productsUse Python and R to perform complex data manipulations in Power BIApply data anonymization and data pseudonymization in Power BILog data and load large datasets in Power BI using Python and REnrich your Power BI dashboards using external APIs and machine learning modelsExtract insights from your data using linear optimization and other algorithmsHandle outliers and missing values for multivariate and time-series dataCreate any visualization, as complex as you want, using R scriptsWho this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful.
Extending Power BI with Python and R
Author: Luca Zavarella
Publisher: Packt Publishing Ltd
ISBN: 1837635862
Category : Computers
Languages : en
Pages : 815
Book Description
Ingest, transform, manipulate, and visualize your data beyond Power BI's capabilities. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Discover best practices for using Python and R in Power BI by implementing non-trivial code Enrich your Power BI dashboards using external APIs and machine learning models Create any visualization, as complex as you want, using Python and R scripts Book DescriptionThe latest edition of this book delves deep into advanced analytics, focusing on enhancing Python and R proficiency within Power BI. New chapters cover optimizing Python and R settings, utilizing Intel's Math Kernel Library (MKL) for performance boosts, and addressing integration challenges. Techniques for managing large datasets beyond available RAM, employing the Parquet data format, and advanced fuzzy matching algorithms are explored. Additionally, it discusses leveraging SQL Server Language Extensions to overcome traditional Python and R limitations in Power BI. It also helps in crafting sophisticated visualizations using the Grammar of Graphics in both R and Python. This Power BI book will help you master data validation with regular expressions, import data from diverse sources, and apply advanced algorithms for transformation. You'll learn how to safeguard personal data in Power BI with techniques like pseudonymization, anonymization, and data masking. You'll also get to grips with the key statistical features of datasets by plotting multiple visual graphs in the process of building a machine learning model. The book will guide you on utilizing external APIs for enrichment, enhancing I/O performance, and leveraging Python and R for analysis. You'll reinforce your learning with questions at the end of each chapter.What you will learn Configure optimal integration of Python and R with Power BI Perform complex data manipulations not possible by default in Power BI Boost Power BI logging and loading large datasets Extract insights from your data using algorithms like linear optimization Calculate string distances and learn how to use them for probabilistic fuzzy matching Handle outliers and missing values for multivariate and time-series data Apply Exploratory Data Analysis in Power BI with R Learn to use Grammar of Graphics in Python Who this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful.
Publisher: Packt Publishing Ltd
ISBN: 1837635862
Category : Computers
Languages : en
Pages : 815
Book Description
Ingest, transform, manipulate, and visualize your data beyond Power BI's capabilities. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Discover best practices for using Python and R in Power BI by implementing non-trivial code Enrich your Power BI dashboards using external APIs and machine learning models Create any visualization, as complex as you want, using Python and R scripts Book DescriptionThe latest edition of this book delves deep into advanced analytics, focusing on enhancing Python and R proficiency within Power BI. New chapters cover optimizing Python and R settings, utilizing Intel's Math Kernel Library (MKL) for performance boosts, and addressing integration challenges. Techniques for managing large datasets beyond available RAM, employing the Parquet data format, and advanced fuzzy matching algorithms are explored. Additionally, it discusses leveraging SQL Server Language Extensions to overcome traditional Python and R limitations in Power BI. It also helps in crafting sophisticated visualizations using the Grammar of Graphics in both R and Python. This Power BI book will help you master data validation with regular expressions, import data from diverse sources, and apply advanced algorithms for transformation. You'll learn how to safeguard personal data in Power BI with techniques like pseudonymization, anonymization, and data masking. You'll also get to grips with the key statistical features of datasets by plotting multiple visual graphs in the process of building a machine learning model. The book will guide you on utilizing external APIs for enrichment, enhancing I/O performance, and leveraging Python and R for analysis. You'll reinforce your learning with questions at the end of each chapter.What you will learn Configure optimal integration of Python and R with Power BI Perform complex data manipulations not possible by default in Power BI Boost Power BI logging and loading large datasets Extract insights from your data using algorithms like linear optimization Calculate string distances and learn how to use them for probabilistic fuzzy matching Handle outliers and missing values for multivariate and time-series data Apply Exploratory Data Analysis in Power BI with R Learn to use Grammar of Graphics in Python Who this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful.
Essentials of Excel VBA, Python, and R
Author: John Lee
Publisher: Springer Nature
ISBN: 3031142365
Category : Business & Economics
Languages : en
Pages : 698
Book Description
This advanced textbook for business statistics teaches, statistical analyses and research methods utilizing business case studies and financial data, with the applications of Excel VBA, Python and R. Each chapter engages the reader with sample data drawn from individual stocks, stock indices, options, and futures. Now in its second edition, it has been expanded into two volumes, each of which is devoted to specific parts of the business analytics curriculum. To reflect the current age of data science and machine learning, the used applications have been updated from Minitab and SAS to Python and R, so that readers will be better prepared for the current industry. This first volume is designed for advanced courses in financial statistics, investment analysis and portfolio management. It is also a comprehensive reference for active statistical finance scholars and business analysts who are looking to upgrade their toolkits. Readers can look to the second volume for dedicated content on financial derivatives, risk management, and machine learning.
Publisher: Springer Nature
ISBN: 3031142365
Category : Business & Economics
Languages : en
Pages : 698
Book Description
This advanced textbook for business statistics teaches, statistical analyses and research methods utilizing business case studies and financial data, with the applications of Excel VBA, Python and R. Each chapter engages the reader with sample data drawn from individual stocks, stock indices, options, and futures. Now in its second edition, it has been expanded into two volumes, each of which is devoted to specific parts of the business analytics curriculum. To reflect the current age of data science and machine learning, the used applications have been updated from Minitab and SAS to Python and R, so that readers will be better prepared for the current industry. This first volume is designed for advanced courses in financial statistics, investment analysis and portfolio management. It is also a comprehensive reference for active statistical finance scholars and business analysts who are looking to upgrade their toolkits. Readers can look to the second volume for dedicated content on financial derivatives, risk management, and machine learning.
Extending R
Author: John M. Chambers
Publisher: CRC Press
ISBN: 1315349876
Category : Mathematics
Languages : en
Pages : 420
Book Description
Up-to-Date Guidance from One of the Foremost Members of the R Core Team Written by John M. Chambers, the leading developer of the original S software, Extending R covers key concepts and techniques in R to support analysis and research projects. It presents the core ideas of R, provides programming guidance for projects of all scales, and introduces new, valuable techniques that extend R. The book first describes the fundamental characteristics and background of R, giving readers a foundation for the remainder of the text. It next discusses topics relevant to programming with R, including the apparatus that supports extensions. The book then extends R’s data structures through object-oriented programming, which is the key technique for coping with complexity. The book also incorporates a new structure for interfaces applicable to a variety of languages. A reflection of what R is today, this guide explains how to design and organize extensions to R by correctly using objects, functions, and interfaces. It enables current and future users to add their own contributions and packages to R. A 2017 Choice Outstanding Academic Title
Publisher: CRC Press
ISBN: 1315349876
Category : Mathematics
Languages : en
Pages : 420
Book Description
Up-to-Date Guidance from One of the Foremost Members of the R Core Team Written by John M. Chambers, the leading developer of the original S software, Extending R covers key concepts and techniques in R to support analysis and research projects. It presents the core ideas of R, provides programming guidance for projects of all scales, and introduces new, valuable techniques that extend R. The book first describes the fundamental characteristics and background of R, giving readers a foundation for the remainder of the text. It next discusses topics relevant to programming with R, including the apparatus that supports extensions. The book then extends R’s data structures through object-oriented programming, which is the key technique for coping with complexity. The book also incorporates a new structure for interfaces applicable to a variety of languages. A reflection of what R is today, this guide explains how to design and organize extensions to R by correctly using objects, functions, and interfaces. It enables current and future users to add their own contributions and packages to R. A 2017 Choice Outstanding Academic Title
R for Business Analytics
Author: A Ohri
Publisher: Springer Science & Business Media
ISBN: 1461443423
Category : Business & Economics
Languages : en
Pages : 322
Book Description
This book examines common tasks performed by business analysts and helps the reader navigate the wealth of information in R and its 4000 packages to create useful analytics applications. Includes interviews with corporate users of R, and easy-to-use examples.
Publisher: Springer Science & Business Media
ISBN: 1461443423
Category : Business & Economics
Languages : en
Pages : 322
Book Description
This book examines common tasks performed by business analysts and helps the reader navigate the wealth of information in R and its 4000 packages to create useful analytics applications. Includes interviews with corporate users of R, and easy-to-use examples.
Advances in Accounting Education
Author: Thomas G. Calderon
Publisher: Emerald Group Publishing
ISBN: 1837971889
Category : Business & Economics
Languages : en
Pages : 165
Book Description
Advances in Accounting Education is a refereed, academic research publication whose purpose is to help meet the needs of faculty members and administrators who are interested in ways to improve teaching, learning and curriculum development in the accounting area at the college and university level.
Publisher: Emerald Group Publishing
ISBN: 1837971889
Category : Business & Economics
Languages : en
Pages : 165
Book Description
Advances in Accounting Education is a refereed, academic research publication whose purpose is to help meet the needs of faculty members and administrators who are interested in ways to improve teaching, learning and curriculum development in the accounting area at the college and university level.
Handbook of Research on Academic Libraries as Partners in Data Science Ecosystems
Author: Mani, Nandita S.
Publisher: IGI Global
ISBN: 1799897044
Category : Language Arts & Disciplines
Languages : en
Pages : 415
Book Description
Beyond providing space for data science activities, academic libraries are often overlooked in the data science landscape that is emerging at academic research institutions. Although some academic libraries are collaborating in specific ways in a small subset of institutions, there is much untapped potential for developing partnerships. As library and information science roles continue to evolve to be more data-centric and interdisciplinary, and as research using a variety of data types continues to proliferate, it is imperative to further explore the dynamics between libraries and the data science ecosystems in which they are a part. The Handbook of Research on Academic Libraries as Partners in Data Science Ecosystems provides a global perspective on current and future trends concerning the integration of data science in libraries. It provides both a foundational base of knowledge around data science and explores numerous ways academicians can reskill their staff, engage in the research enterprise, contribute to curriculum development, and help build a stronger ecosystem where libraries are part of data science. Covering topics such as data science initiatives, digital humanities, and student engagement, this book is an indispensable resource for librarians, information professionals, academic institutions, researchers, academic libraries, and academicians.
Publisher: IGI Global
ISBN: 1799897044
Category : Language Arts & Disciplines
Languages : en
Pages : 415
Book Description
Beyond providing space for data science activities, academic libraries are often overlooked in the data science landscape that is emerging at academic research institutions. Although some academic libraries are collaborating in specific ways in a small subset of institutions, there is much untapped potential for developing partnerships. As library and information science roles continue to evolve to be more data-centric and interdisciplinary, and as research using a variety of data types continues to proliferate, it is imperative to further explore the dynamics between libraries and the data science ecosystems in which they are a part. The Handbook of Research on Academic Libraries as Partners in Data Science Ecosystems provides a global perspective on current and future trends concerning the integration of data science in libraries. It provides both a foundational base of knowledge around data science and explores numerous ways academicians can reskill their staff, engage in the research enterprise, contribute to curriculum development, and help build a stronger ecosystem where libraries are part of data science. Covering topics such as data science initiatives, digital humanities, and student engagement, this book is an indispensable resource for librarians, information professionals, academic institutions, researchers, academic libraries, and academicians.
The Ultimate Power Query Cookbook for Power BI and Excel
Author: Dominick Raimato
Publisher: BPB Publications
ISBN: 9355517394
Category : Computers
Languages : en
Pages : 522
Book Description
Novice or expert, learn to simplify and optimize data transformations KEY FEATURES ● Practical approaches to cleansing, connecting and transforming data in Power Query. ● Real-life examples that readers can apply to their own work. ● Master Power Query for Excel and Power BI with step-by-step recipes. DESCRIPTION “The Ultimate Power Query Cookbook for Power BI and Excel” serves up easy-to-follow recipes that transform data into meaningful insights. You will learn to clean messy files, combine datasets, and even use AI magic to Power BI and Excel. This book will walk you through the basics of getting connected to data with Power Query. You will understand how to ingest data from files, folders, databases, websites, APIs, and other third party sources. Once connected, you will learn how to transform the data so it is ready for your use. We will clean up columns, filter, replace, extract, and classify data in Power Query to meet your needs. The book offers over 100 practical recipes, ensuring you understand each step with clear explanations and examples. Lastly, we will go over advanced techniques to help optimize and simplify your transformations allowing fast refreshes all while helping you manage them in the future. This book will help you know how to apply these techniques and recipes to your data all while understanding the implications of making certain decisions. This will enable you to have better conversations with other data professionals who are providing data for your use. WHAT YOU WILL LEARN ● Learn to connect to files, databases, and third-party services. ● Manage data types and formats to optimize storage. ● Transform, create, and manipulate queries. ● Combine, merge, filter, and cleanse queries. ● Integrate artificial intelligence to accelerate insights. ● Perform complex and scalable transformations. WHO THIS BOOK IS FOR Novice or expert, this book is designed for all Excel users, data analysts, Power BI power users, business professionals and data enthusiasts to get the most out of your data solutions when transforming your data in Power Query. TABLE OF CONTENTS 1. Introduction to Power Query 2. Connect to File-Based Data Sources 3. Connect to Web-Based Data Sources 4. Connect to Database Sources 5. Connect to Third-Party Data Sources 6. Managing Data Types 7. Transforming Columns 8. Cleansing Columns 9. Creating New Columns 10. Combining and Manipulating Queries 11. Using Python, R, and AI 12. Indexing 13. Parameters 14. Functions 15. Advanced Web Connections 16. Manipulating Supporting Queries
Publisher: BPB Publications
ISBN: 9355517394
Category : Computers
Languages : en
Pages : 522
Book Description
Novice or expert, learn to simplify and optimize data transformations KEY FEATURES ● Practical approaches to cleansing, connecting and transforming data in Power Query. ● Real-life examples that readers can apply to their own work. ● Master Power Query for Excel and Power BI with step-by-step recipes. DESCRIPTION “The Ultimate Power Query Cookbook for Power BI and Excel” serves up easy-to-follow recipes that transform data into meaningful insights. You will learn to clean messy files, combine datasets, and even use AI magic to Power BI and Excel. This book will walk you through the basics of getting connected to data with Power Query. You will understand how to ingest data from files, folders, databases, websites, APIs, and other third party sources. Once connected, you will learn how to transform the data so it is ready for your use. We will clean up columns, filter, replace, extract, and classify data in Power Query to meet your needs. The book offers over 100 practical recipes, ensuring you understand each step with clear explanations and examples. Lastly, we will go over advanced techniques to help optimize and simplify your transformations allowing fast refreshes all while helping you manage them in the future. This book will help you know how to apply these techniques and recipes to your data all while understanding the implications of making certain decisions. This will enable you to have better conversations with other data professionals who are providing data for your use. WHAT YOU WILL LEARN ● Learn to connect to files, databases, and third-party services. ● Manage data types and formats to optimize storage. ● Transform, create, and manipulate queries. ● Combine, merge, filter, and cleanse queries. ● Integrate artificial intelligence to accelerate insights. ● Perform complex and scalable transformations. WHO THIS BOOK IS FOR Novice or expert, this book is designed for all Excel users, data analysts, Power BI power users, business professionals and data enthusiasts to get the most out of your data solutions when transforming your data in Power Query. TABLE OF CONTENTS 1. Introduction to Power Query 2. Connect to File-Based Data Sources 3. Connect to Web-Based Data Sources 4. Connect to Database Sources 5. Connect to Third-Party Data Sources 6. Managing Data Types 7. Transforming Columns 8. Cleansing Columns 9. Creating New Columns 10. Combining and Manipulating Queries 11. Using Python, R, and AI 12. Indexing 13. Parameters 14. Functions 15. Advanced Web Connections 16. Manipulating Supporting Queries
Football Analytics with Python & R
Author: Eric A. Eager
Publisher: "O'Reilly Media, Inc."
ISBN: 1492099589
Category : Mathematics
Languages : en
Pages : 361
Book Description
Baseball is not the only sport to use "moneyball." American football fans, teams, and gamblers are increasingly using data to gain an edge against the competition. Professional and college teams use data to help select players and identify team needs. Fans use data to guide fantasy team picks and strategies. Sports bettors and fantasy football players are using data to help inform decision making. This concise book provides a clear introduction to using statistical models to analyze football data. Whether your goal is to produce a winning team, dominate your fantasy football league, qualify for an entry-level football analyst position, or simply learn R and Python using fun example cases, this book is your starting place. You'll learn how to: Apply basic statistical concepts to football datasets Describe football data with quantitative methods Create efficient workflows that offer reproducible results Use data science skills such as web scraping, manipulating data, and plotting data Implement statistical models for football data Link data summaries and model outputs to create reports or presentations using tools such as R Markdown and R Shiny And more
Publisher: "O'Reilly Media, Inc."
ISBN: 1492099589
Category : Mathematics
Languages : en
Pages : 361
Book Description
Baseball is not the only sport to use "moneyball." American football fans, teams, and gamblers are increasingly using data to gain an edge against the competition. Professional and college teams use data to help select players and identify team needs. Fans use data to guide fantasy team picks and strategies. Sports bettors and fantasy football players are using data to help inform decision making. This concise book provides a clear introduction to using statistical models to analyze football data. Whether your goal is to produce a winning team, dominate your fantasy football league, qualify for an entry-level football analyst position, or simply learn R and Python using fun example cases, this book is your starting place. You'll learn how to: Apply basic statistical concepts to football datasets Describe football data with quantitative methods Create efficient workflows that offer reproducible results Use data science skills such as web scraping, manipulating data, and plotting data Implement statistical models for football data Link data summaries and model outputs to create reports or presentations using tools such as R Markdown and R Shiny And more