Author: D. B. Holt
Publisher: Cambridge University Press
ISBN: 9781107424142
Category : Science
Languages : en
Pages : 0
Book Description
Covering topics that are especially important in electronic device development, this book surveys the properties, effects, roles and characterization of structurally extended defects in semiconductors. The basic properties of extended defects are outlined, and their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization are discussed. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.
Extended Defects in Semiconductors
Author: D. B. Holt
Publisher: Cambridge University Press
ISBN: 9781107424142
Category : Science
Languages : en
Pages : 0
Book Description
Covering topics that are especially important in electronic device development, this book surveys the properties, effects, roles and characterization of structurally extended defects in semiconductors. The basic properties of extended defects are outlined, and their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization are discussed. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.
Publisher: Cambridge University Press
ISBN: 9781107424142
Category : Science
Languages : en
Pages : 0
Book Description
Covering topics that are especially important in electronic device development, this book surveys the properties, effects, roles and characterization of structurally extended defects in semiconductors. The basic properties of extended defects are outlined, and their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization are discussed. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.
Defects in Semiconductors
Author:
Publisher: Academic Press
ISBN: 0128019409
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors
Publisher: Academic Press
ISBN: 0128019409
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors
III-Nitride Semiconductors
Author: M.O. Manasreh
Publisher: Elsevier
ISBN: 0080534449
Category : Science
Languages : en
Pages : 463
Book Description
Research advances in III-nitride semiconductor materials and device have led to an exponential increase in activity directed towards electronic and optoelectronic applications. There is also great scientific interest in this class of materials because they appear to form the first semiconductor system in which extended defects do not severely affect the optical properties of devices. The volume consists of chapters written by a number of leading researchers in nitride materials and device technology with the emphasis on the dopants incorporations, impurities identifications, defects engineering, defects characterization, ion implantation, irradiation-induced defects, residual stress, structural defects and phonon confinement. This unique volume provides a comprehensive review and introduction of defects and structural properties of GaN and related compounds for newcomers to the field and stimulus to further advances for experienced researchers. Given the current level of interest and research activity directed towards nitride materials and devices, the publication of the volume is particularly timely. Early pioneering work by Pankove and co-workers in the 1970s yielded a metal-insulator-semiconductor GaN light-emitting diode (LED), but the difficulty of producing p-type GaN precluded much further effort. The current level of activity in nitride semiconductors was inspired largely by the results of Akasaki and co-workers and of Nakamura and co-workers in the late 1980s and early 1990s in the development of p-type doping in GaN and the demonstration of nitride-based LEDs at visible wavelengths. These advances were followed by the successful fabrication and commercialization of nitride blue laser diodes by Nakamura et al at Nichia. The chapters contained in this volume constitutes a mere sampling of the broad range of research on nitride semiconductor materials and defect issues currently being pursued in academic, government, and industrial laboratories worldwide.
Publisher: Elsevier
ISBN: 0080534449
Category : Science
Languages : en
Pages : 463
Book Description
Research advances in III-nitride semiconductor materials and device have led to an exponential increase in activity directed towards electronic and optoelectronic applications. There is also great scientific interest in this class of materials because they appear to form the first semiconductor system in which extended defects do not severely affect the optical properties of devices. The volume consists of chapters written by a number of leading researchers in nitride materials and device technology with the emphasis on the dopants incorporations, impurities identifications, defects engineering, defects characterization, ion implantation, irradiation-induced defects, residual stress, structural defects and phonon confinement. This unique volume provides a comprehensive review and introduction of defects and structural properties of GaN and related compounds for newcomers to the field and stimulus to further advances for experienced researchers. Given the current level of interest and research activity directed towards nitride materials and devices, the publication of the volume is particularly timely. Early pioneering work by Pankove and co-workers in the 1970s yielded a metal-insulator-semiconductor GaN light-emitting diode (LED), but the difficulty of producing p-type GaN precluded much further effort. The current level of activity in nitride semiconductors was inspired largely by the results of Akasaki and co-workers and of Nakamura and co-workers in the late 1980s and early 1990s in the development of p-type doping in GaN and the demonstration of nitride-based LEDs at visible wavelengths. These advances were followed by the successful fabrication and commercialization of nitride blue laser diodes by Nakamura et al at Nichia. The chapters contained in this volume constitutes a mere sampling of the broad range of research on nitride semiconductor materials and defect issues currently being pursued in academic, government, and industrial laboratories worldwide.
Point and Extended Defects in Semiconductors
Author: Giorgio Benedek
Publisher: Springer Science & Business Media
ISBN: 1468457098
Category : Science
Languages : en
Pages : 286
Book Description
The systematic study of defects in semiconductors began in the early fifties. FrQm that time on many questions about the defect structure and properties have been an swered, but many others are still a matter of investigation and discussion. Moreover, during these years new problems arose in connection with the identification and char acterization of defects, their role in determining transport and optical properties of semiconductor materials and devices, as well as from the technology of the ever in creasing scale of integration. This book presents to the reader a view into both basic concepts of defect physics and recent developments of high resolution experimental techniques. The book does not aim at an exhaustive presentation of modern defect physics; rather it gathers a number of topics which represent the present-time research in this field. The volume collects the contributions to the Advanced Research Workshop "Point, Extended and Surface Defects in Semiconductors" held at the Ettore Majo rana Centre at Erice (Italy) from 2 to 7 November 1988, in the framework of the International School of Materials Science and Technology. The workshop has brought together scientists from thirteen countries. Most participants are currently working on defect problems in either silicon submicron technology or in quantum wells and superlattices, where point defects, dislocations, interfaces and surfaces are closely packed together.
Publisher: Springer Science & Business Media
ISBN: 1468457098
Category : Science
Languages : en
Pages : 286
Book Description
The systematic study of defects in semiconductors began in the early fifties. FrQm that time on many questions about the defect structure and properties have been an swered, but many others are still a matter of investigation and discussion. Moreover, during these years new problems arose in connection with the identification and char acterization of defects, their role in determining transport and optical properties of semiconductor materials and devices, as well as from the technology of the ever in creasing scale of integration. This book presents to the reader a view into both basic concepts of defect physics and recent developments of high resolution experimental techniques. The book does not aim at an exhaustive presentation of modern defect physics; rather it gathers a number of topics which represent the present-time research in this field. The volume collects the contributions to the Advanced Research Workshop "Point, Extended and Surface Defects in Semiconductors" held at the Ettore Majo rana Centre at Erice (Italy) from 2 to 7 November 1988, in the framework of the International School of Materials Science and Technology. The workshop has brought together scientists from thirteen countries. Most participants are currently working on defect problems in either silicon submicron technology or in quantum wells and superlattices, where point defects, dislocations, interfaces and surfaces are closely packed together.
Point Defects in Semiconductors and Insulators
Author: Johann-Martin Spaeth
Publisher: Springer Science & Business Media
ISBN: 9783540426950
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
The precedent book with the title "Structural Analysis of Point Defects in Solids: An introduction to multiple magnetic resonance spectroscopy" ap peared about 10 years ago. Since then a very active development has oc curred both with respect to the experimental methods and the theoretical interpretation of the experimental results. It would therefore not have been sufficient to simply publish a second edition of the precedent book with cor rections and a few additions. Furthermore the application of the multiple magnetic resonance methods has more and more shifted towards materials science and represents one of the important methods of materials analysis. Multiple magnetic resonances are used less now for "fundamental" studies in solid state physics. Therefore a more "pedestrian" access to the meth ods is called for to help the materials scientist to use them or to appreciate results obtained by using these methods. We have kept the two introduc tory chapters on conventional electron paramagnetic resonance (EPR) of the precedent book which are the base for the multiple resonance methods. The chapter on optical detection of EPR (ODEPR) was supplemented by sections on the structural information one can get from "forbidden" transitions as well as on spatial correlations between defects in the so-called "cross relaxation spectroscopy". High-field ODEPR/ENDOR was also added. The chapter on stationary electron nuclear double resonance (ENDOR) was supplemented by the method of stochastic END OR developed a few years ago in Paderborn which is now also commercially available.
Publisher: Springer Science & Business Media
ISBN: 9783540426950
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
The precedent book with the title "Structural Analysis of Point Defects in Solids: An introduction to multiple magnetic resonance spectroscopy" ap peared about 10 years ago. Since then a very active development has oc curred both with respect to the experimental methods and the theoretical interpretation of the experimental results. It would therefore not have been sufficient to simply publish a second edition of the precedent book with cor rections and a few additions. Furthermore the application of the multiple magnetic resonance methods has more and more shifted towards materials science and represents one of the important methods of materials analysis. Multiple magnetic resonances are used less now for "fundamental" studies in solid state physics. Therefore a more "pedestrian" access to the meth ods is called for to help the materials scientist to use them or to appreciate results obtained by using these methods. We have kept the two introduc tory chapters on conventional electron paramagnetic resonance (EPR) of the precedent book which are the base for the multiple resonance methods. The chapter on optical detection of EPR (ODEPR) was supplemented by sections on the structural information one can get from "forbidden" transitions as well as on spatial correlations between defects in the so-called "cross relaxation spectroscopy". High-field ODEPR/ENDOR was also added. The chapter on stationary electron nuclear double resonance (ENDOR) was supplemented by the method of stochastic END OR developed a few years ago in Paderborn which is now also commercially available.
Defects in Semiconductors 14
Author: H.J. von Bardeleben
Publisher: Trans Tech Publications Ltd
ISBN: 3035704244
Category : Technology & Engineering
Languages : en
Pages : 1277
Book Description
Proceedings of the 14th International Conference on Defects in Semiconductors (ICDS-14), Paris, France, 1986
Publisher: Trans Tech Publications Ltd
ISBN: 3035704244
Category : Technology & Engineering
Languages : en
Pages : 1277
Book Description
Proceedings of the 14th International Conference on Defects in Semiconductors (ICDS-14), Paris, France, 1986
Principles of Condensed Matter Physics
Author: P. M. Chaikin
Publisher: Cambridge University Press
ISBN: 1139643053
Category : Science
Languages : en
Pages : 724
Book Description
Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter, based on symmetries and conservation laws. It explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions, as well as discussing the structure and properties of materials with different symmetries. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalised rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.
Publisher: Cambridge University Press
ISBN: 1139643053
Category : Science
Languages : en
Pages : 724
Book Description
Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter, based on symmetries and conservation laws. It explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions, as well as discussing the structure and properties of materials with different symmetries. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalised rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.
Polarization Effects in Semiconductors
Author: Debdeep Jena
Publisher: Springer Science & Business Media
ISBN: 0387368310
Category : Science
Languages : en
Pages : 523
Book Description
Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications presents the latest understanding of the solid state physics, electronic implications and practical applications of the unique spontaneous or pyro-electric polarization charge of wurtzite compound semiconductors, and associated piezo-electric effects in strained thin film heterostructures. These heterostructures are used in wide band gap semiconductor based sensors, in addition to various electronic and opto-electronic semiconductor devices. The book covers the ab initio theory of polarization in cubic and hexagonal semiconductors, growth of thin film GaN, GaN/AlGaN GaAlN/ AlGaInN, and other nitrides, and SiC heterostructures. It discusses the effects of spontaneous and piezoelectric polarization on band diagrams and electronic properties of abrupt and compositionally graded heterostructures, electronic characterization of polarization-induced charge distributions by scanning-probe spectroscopies, and gauge factors and strain effects. In addition, polarization in extended defects, piezo-electric strain/charge engineering, and application to device design and processing are covered. The effects of polarization on the fundamental electron transport properties, and on the basic optical transitions are described. The crucial role of polarization in devices such as high electron mobility transistors (HEMTs) and light-emitting diodes (LEDs) is covered. The chapters are authored by professors and researchers in the fields of physics, applied physics and electrical engineering, who worked for 5 years under the "Polarization Effects in Semiconductors" DOD funded Multi Disciplinary University Research Initiative. This book will be of interest to graduate students and researchers working in the field of wide-bandgap semiconductor physics and their device applications. It will also be useful for practicing engineers in the field of wide-bandgap semiconductor device research and development.
Publisher: Springer Science & Business Media
ISBN: 0387368310
Category : Science
Languages : en
Pages : 523
Book Description
Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications presents the latest understanding of the solid state physics, electronic implications and practical applications of the unique spontaneous or pyro-electric polarization charge of wurtzite compound semiconductors, and associated piezo-electric effects in strained thin film heterostructures. These heterostructures are used in wide band gap semiconductor based sensors, in addition to various electronic and opto-electronic semiconductor devices. The book covers the ab initio theory of polarization in cubic and hexagonal semiconductors, growth of thin film GaN, GaN/AlGaN GaAlN/ AlGaInN, and other nitrides, and SiC heterostructures. It discusses the effects of spontaneous and piezoelectric polarization on band diagrams and electronic properties of abrupt and compositionally graded heterostructures, electronic characterization of polarization-induced charge distributions by scanning-probe spectroscopies, and gauge factors and strain effects. In addition, polarization in extended defects, piezo-electric strain/charge engineering, and application to device design and processing are covered. The effects of polarization on the fundamental electron transport properties, and on the basic optical transitions are described. The crucial role of polarization in devices such as high electron mobility transistors (HEMTs) and light-emitting diodes (LEDs) is covered. The chapters are authored by professors and researchers in the fields of physics, applied physics and electrical engineering, who worked for 5 years under the "Polarization Effects in Semiconductors" DOD funded Multi Disciplinary University Research Initiative. This book will be of interest to graduate students and researchers working in the field of wide-bandgap semiconductor physics and their device applications. It will also be useful for practicing engineers in the field of wide-bandgap semiconductor device research and development.
Defects in Solids
Author: Richard J. D. Tilley
Publisher: John Wiley & Sons
ISBN: 047038073X
Category : Science
Languages : en
Pages : 549
Book Description
Provides a thorough understanding of the chemistry and physics of defects, enabling the reader to manipulate them in the engineering of materials. Reinforces theoretical concepts by placing emphasis on real world processes and applications. Includes two kinds of end-of-chapter problems: multiple choice (to test knowledge of terms and principles) and more extensive exercises and calculations (to build skills and understanding). Supplementary material on crystallography and band structure are included in separate appendices.
Publisher: John Wiley & Sons
ISBN: 047038073X
Category : Science
Languages : en
Pages : 549
Book Description
Provides a thorough understanding of the chemistry and physics of defects, enabling the reader to manipulate them in the engineering of materials. Reinforces theoretical concepts by placing emphasis on real world processes and applications. Includes two kinds of end-of-chapter problems: multiple choice (to test knowledge of terms and principles) and more extensive exercises and calculations (to build skills and understanding). Supplementary material on crystallography and band structure are included in separate appendices.
Color Centers in Semiconductors for Quantum Applications
Author: Joel Davidsson
Publisher: Linköping University Electronic Press
ISBN: 9179297307
Category : Electronic books
Languages : en
Pages : 72
Book Description
Point defects in semiconductors have been and will continue to be relevant for applications. Shallow defects realize transistors, which power the modern age of information, and in the not-too-distant future, deep-level defects could provide the foundation for a revolution in quantum information processing. Deep-level defects (in particular color centers) are also of interest for other applications such as a single photon emitter, especially one that emits at 1550 nm, which is the optimal frequency for long-range communication via fiber optics. First-principle calculations can predict the energies and optical properties of point defects. I performed extensive convergence tests for magneto-optical properties, such as zero phonon lines, hyperfine coupling parameters, and zero-field splitting for the four different configurations of the divacancy in 4H-SiC. Comparing the converged results with experimental measurements, a clear identification of the different configurations was made. With this approach, I also identified all configurations for the silicon vacancy in 4H-SiC as well as the divacancy and silicon vacancy in 6H-SiC. The same method was further used to identify two additional configurations belonging to the divacancy present in a 3C stacking fault inclusion in 4H-SiC. I extended the calculated properties to include the transition dipole moment which provides the polarization, intensity, and lifetime of the zero phonon lines. When calculating the transition dipole moment, I show that it is crucial to include the self-consistent change of the electronic orbitals in the excited state due to the geometry relaxation. I tested the method on the divacancy in 4H-SiC, further strengthening the previous identification and providing accurate photoluminescence intensities and lifetimes. Finding stable point defects with the right properties for a given application is a challenging task. Due to the vast number of possible point defects present in bulk semiconductor materials, I designed and implemented a collection of automatic workflows to systematically investigate any point defects. This collection is called ADAQ (Automatic Defect Analysis and Qualification) and automates every step of the theoretical process, from creating defects to predicting their properties. Using ADAQ, I screened about 8000 intrinsic point defect clusters in 4H-SiC. This thesis presents an overview of the formation energy and the most relevant optical properties for these single and double point defects. These results show great promise for finding new color centers suitable for various quantum applications.
Publisher: Linköping University Electronic Press
ISBN: 9179297307
Category : Electronic books
Languages : en
Pages : 72
Book Description
Point defects in semiconductors have been and will continue to be relevant for applications. Shallow defects realize transistors, which power the modern age of information, and in the not-too-distant future, deep-level defects could provide the foundation for a revolution in quantum information processing. Deep-level defects (in particular color centers) are also of interest for other applications such as a single photon emitter, especially one that emits at 1550 nm, which is the optimal frequency for long-range communication via fiber optics. First-principle calculations can predict the energies and optical properties of point defects. I performed extensive convergence tests for magneto-optical properties, such as zero phonon lines, hyperfine coupling parameters, and zero-field splitting for the four different configurations of the divacancy in 4H-SiC. Comparing the converged results with experimental measurements, a clear identification of the different configurations was made. With this approach, I also identified all configurations for the silicon vacancy in 4H-SiC as well as the divacancy and silicon vacancy in 6H-SiC. The same method was further used to identify two additional configurations belonging to the divacancy present in a 3C stacking fault inclusion in 4H-SiC. I extended the calculated properties to include the transition dipole moment which provides the polarization, intensity, and lifetime of the zero phonon lines. When calculating the transition dipole moment, I show that it is crucial to include the self-consistent change of the electronic orbitals in the excited state due to the geometry relaxation. I tested the method on the divacancy in 4H-SiC, further strengthening the previous identification and providing accurate photoluminescence intensities and lifetimes. Finding stable point defects with the right properties for a given application is a challenging task. Due to the vast number of possible point defects present in bulk semiconductor materials, I designed and implemented a collection of automatic workflows to systematically investigate any point defects. This collection is called ADAQ (Automatic Defect Analysis and Qualification) and automates every step of the theoretical process, from creating defects to predicting their properties. Using ADAQ, I screened about 8000 intrinsic point defect clusters in 4H-SiC. This thesis presents an overview of the formation energy and the most relevant optical properties for these single and double point defects. These results show great promise for finding new color centers suitable for various quantum applications.