Author: John Swallow
Publisher: Cambridge University Press
ISBN: 9780521544993
Category : Computers
Languages : en
Pages : 224
Book Description
Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level. The text grounds the presentation in the concept of algebraic numbers with complex approximations and assumes of its readers only a first course in abstract algebra. For readers with Maple or Mathematica, the text introduces tools for hands-on experimentation with finite extensions of the rational numbers, enabling a familiarity never before available to students of the subject. The text is appropriate for traditional lecture courses, for seminars, or for self-paced independent study by undergraduates and graduate students.
Exploratory Galois Theory
Author: John Swallow
Publisher: Cambridge University Press
ISBN: 9780521544993
Category : Computers
Languages : en
Pages : 224
Book Description
Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level. The text grounds the presentation in the concept of algebraic numbers with complex approximations and assumes of its readers only a first course in abstract algebra. For readers with Maple or Mathematica, the text introduces tools for hands-on experimentation with finite extensions of the rational numbers, enabling a familiarity never before available to students of the subject. The text is appropriate for traditional lecture courses, for seminars, or for self-paced independent study by undergraduates and graduate students.
Publisher: Cambridge University Press
ISBN: 9780521544993
Category : Computers
Languages : en
Pages : 224
Book Description
Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level. The text grounds the presentation in the concept of algebraic numbers with complex approximations and assumes of its readers only a first course in abstract algebra. For readers with Maple or Mathematica, the text introduces tools for hands-on experimentation with finite extensions of the rational numbers, enabling a familiarity never before available to students of the subject. The text is appropriate for traditional lecture courses, for seminars, or for self-paced independent study by undergraduates and graduate students.
Galois Theory
Author: David A. Cox
Publisher: John Wiley & Sons
ISBN: 1118072057
Category : Mathematics
Languages : en
Pages : 613
Book Description
Praise for the First Edition ". . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!" —Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel’s theory of Abelian equations, casus irreducibili, and the Galois theory of origami. In addition, this book features detailed treatments of several topics not covered in standard texts on Galois theory, including: The contributions of Lagrange, Galois, and Kronecker How to compute Galois groups Galois's results about irreducible polynomials of prime or prime-squared degree Abel's theorem about geometric constructions on the lemniscates Galois groups of quartic polynomials in all characteristics Throughout the book, intriguing Mathematical Notes and Historical Notes sections clarify the discussed ideas and the historical context; numerous exercises and examples use Maple and Mathematica to showcase the computations related to Galois theory; and extensive references have been added to provide readers with additional resources for further study. Galois Theory, Second Edition is an excellent book for courses on abstract algebra at the upper-undergraduate and graduate levels. The book also serves as an interesting reference for anyone with a general interest in Galois theory and its contributions to the field of mathematics.
Publisher: John Wiley & Sons
ISBN: 1118072057
Category : Mathematics
Languages : en
Pages : 613
Book Description
Praise for the First Edition ". . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!" —Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel’s theory of Abelian equations, casus irreducibili, and the Galois theory of origami. In addition, this book features detailed treatments of several topics not covered in standard texts on Galois theory, including: The contributions of Lagrange, Galois, and Kronecker How to compute Galois groups Galois's results about irreducible polynomials of prime or prime-squared degree Abel's theorem about geometric constructions on the lemniscates Galois groups of quartic polynomials in all characteristics Throughout the book, intriguing Mathematical Notes and Historical Notes sections clarify the discussed ideas and the historical context; numerous exercises and examples use Maple and Mathematica to showcase the computations related to Galois theory; and extensive references have been added to provide readers with additional resources for further study. Galois Theory, Second Edition is an excellent book for courses on abstract algebra at the upper-undergraduate and graduate levels. The book also serves as an interesting reference for anyone with a general interest in Galois theory and its contributions to the field of mathematics.
A Classical Introduction to Galois Theory
Author: Stephen C. Newman
Publisher: John Wiley & Sons
ISBN: 1118336844
Category : Mathematics
Languages : en
Pages : 296
Book Description
Explore the foundations and modern applications of Galois theory Galois theory is widely regarded as one of the most elegant areas of mathematics. A Classical Introduction to Galois Theory develops the topic from a historical perspective, with an emphasis on the solvability of polynomials by radicals. The book provides a gradual transition from the computational methods typical of early literature on the subject to the more abstract approach that characterizes most contemporary expositions. The author provides an easily-accessible presentation of fundamental notions such as roots of unity, minimal polynomials, primitive elements, radical extensions, fixed fields, groups of automorphisms, and solvable series. As a result, their role in modern treatments of Galois theory is clearly illuminated for readers. Classical theorems by Abel, Galois, Gauss, Kronecker, Lagrange, and Ruffini are presented, and the power of Galois theory as both a theoretical and computational tool is illustrated through: A study of the solvability of polynomials of prime degree Development of the theory of periods of roots of unity Derivation of the classical formulas for solving general quadratic, cubic, and quartic polynomials by radicals Throughout the book, key theorems are proved in two ways, once using a classical approach and then again utilizing modern methods. Numerous worked examples showcase the discussed techniques, and background material on groups and fields is provided, supplying readers with a self-contained discussion of the topic. A Classical Introduction to Galois Theory is an excellent resource for courses on abstract algebra at the upper-undergraduate level. The book is also appealing to anyone interested in understanding the origins of Galois theory, why it was created, and how it has evolved into the discipline it is today.
Publisher: John Wiley & Sons
ISBN: 1118336844
Category : Mathematics
Languages : en
Pages : 296
Book Description
Explore the foundations and modern applications of Galois theory Galois theory is widely regarded as one of the most elegant areas of mathematics. A Classical Introduction to Galois Theory develops the topic from a historical perspective, with an emphasis on the solvability of polynomials by radicals. The book provides a gradual transition from the computational methods typical of early literature on the subject to the more abstract approach that characterizes most contemporary expositions. The author provides an easily-accessible presentation of fundamental notions such as roots of unity, minimal polynomials, primitive elements, radical extensions, fixed fields, groups of automorphisms, and solvable series. As a result, their role in modern treatments of Galois theory is clearly illuminated for readers. Classical theorems by Abel, Galois, Gauss, Kronecker, Lagrange, and Ruffini are presented, and the power of Galois theory as both a theoretical and computational tool is illustrated through: A study of the solvability of polynomials of prime degree Development of the theory of periods of roots of unity Derivation of the classical formulas for solving general quadratic, cubic, and quartic polynomials by radicals Throughout the book, key theorems are proved in two ways, once using a classical approach and then again utilizing modern methods. Numerous worked examples showcase the discussed techniques, and background material on groups and fields is provided, supplying readers with a self-contained discussion of the topic. A Classical Introduction to Galois Theory is an excellent resource for courses on abstract algebra at the upper-undergraduate level. The book is also appealing to anyone interested in understanding the origins of Galois theory, why it was created, and how it has evolved into the discipline it is today.
Galois Theory And Applications: Solved Exercises And Problems
Author: Mohamed Ayad
Publisher: World Scientific Publishing Company
ISBN: 9813238321
Category : Mathematics
Languages : en
Pages : 450
Book Description
'Ayad’s aim was to create a collection of problems and exercises related to Galois Theory. In this Ayad was certainly successful. Galois Theory and Applications contains almost 450 pages of problems and their solutions. These problems range from the routine and concrete to the very abstract. Many are quite challenging. Some of the problems provide accessible presentations of material not normally seen in a first course on Galois Theory. For example, the chapter 'Galois extensions, Galois groups' begins with a wonderful problem on formally real fields that I plan on assigning to my students this fall.'MAA ReviewsThe book provides exercises and problems with solutions in Galois Theory and its applications, which include finite fields, permutation polynomials, derivations and algebraic number theory.It will be useful to the audience below:
Publisher: World Scientific Publishing Company
ISBN: 9813238321
Category : Mathematics
Languages : en
Pages : 450
Book Description
'Ayad’s aim was to create a collection of problems and exercises related to Galois Theory. In this Ayad was certainly successful. Galois Theory and Applications contains almost 450 pages of problems and their solutions. These problems range from the routine and concrete to the very abstract. Many are quite challenging. Some of the problems provide accessible presentations of material not normally seen in a first course on Galois Theory. For example, the chapter 'Galois extensions, Galois groups' begins with a wonderful problem on formally real fields that I plan on assigning to my students this fall.'MAA ReviewsThe book provides exercises and problems with solutions in Galois Theory and its applications, which include finite fields, permutation polynomials, derivations and algebraic number theory.It will be useful to the audience below:
Actions of Groups
Author: John McCleary
Publisher: Cambridge University Press
ISBN: 1009183877
Category : Mathematics
Languages : en
Pages : 248
Book Description
Using the unifying notion of group actions, this second course in modern algebra introduces the deeper algebraic tools needed to get into topics only hinted at in a first course, like the successful classification of finite simple groups and how groups play a role in the solutions of polynomial equations. Because groups may act as permutations of a set, as linear transformations on a vector space, or as automorphisms of a field, the deeper structure of a group may emerge from these viewpoints, two different groups can be distinguished, or a polynomial equation can be shown to be solvable by radicals. By developing the properties of these group actions, readers encounter essential algebra topics like the Sylow theorems and their applications, Galois theory, and representation theory. Warmup chapters that review and build on the first course and active learning modules help students transition to a deeper understanding of ideas.
Publisher: Cambridge University Press
ISBN: 1009183877
Category : Mathematics
Languages : en
Pages : 248
Book Description
Using the unifying notion of group actions, this second course in modern algebra introduces the deeper algebraic tools needed to get into topics only hinted at in a first course, like the successful classification of finite simple groups and how groups play a role in the solutions of polynomial equations. Because groups may act as permutations of a set, as linear transformations on a vector space, or as automorphisms of a field, the deeper structure of a group may emerge from these viewpoints, two different groups can be distinguished, or a polynomial equation can be shown to be solvable by radicals. By developing the properties of these group actions, readers encounter essential algebra topics like the Sylow theorems and their applications, Galois theory, and representation theory. Warmup chapters that review and build on the first course and active learning modules help students transition to a deeper understanding of ideas.
Computers and Exploratory Learning
Author: Andrea A. DiSessa
Publisher: Springer Science & Business Media
ISBN: 3642577997
Category : Education
Languages : en
Pages : 484
Book Description
Computers are playing a fundamental role in enhancing exploratory learning techniques in education. This volume in the NATO Special Programme on Advanced Educational Technology covers the state of the art in the design and use of computer systems for exploratory learning. Contributed chapters treat principles, theory, practice, and examples of some of the best contemporary computer-based learning environments: Logo, Boxer, Microworlds, Cabri-Géomètre, Star Logo, Table Top, Geomland, spreadsheets, Function Machines, and others. Emphasis is on mathematics and science education. Synthetic chapters provide an overview of the current scene in computers and exploratory learning, and analyses from the perspectives of epistemology, learning, and socio-cultural studies.
Publisher: Springer Science & Business Media
ISBN: 3642577997
Category : Education
Languages : en
Pages : 484
Book Description
Computers are playing a fundamental role in enhancing exploratory learning techniques in education. This volume in the NATO Special Programme on Advanced Educational Technology covers the state of the art in the design and use of computer systems for exploratory learning. Contributed chapters treat principles, theory, practice, and examples of some of the best contemporary computer-based learning environments: Logo, Boxer, Microworlds, Cabri-Géomètre, Star Logo, Table Top, Geomland, spreadsheets, Function Machines, and others. Emphasis is on mathematics and science education. Synthetic chapters provide an overview of the current scene in computers and exploratory learning, and analyses from the perspectives of epistemology, learning, and socio-cultural studies.
A Transition to Advanced Mathematics
Author: William Johnston
Publisher: OUP USA
ISBN: 0195310764
Category : Mathematics
Languages : en
Pages : 766
Book Description
Preface 1. Mathematical Logic 2. Abstract Algebra 3. Number Theory 4. Real Analysis 5. Probability and Statistics 6. Graph Theory 7. Complex Analysis Answers to Questions Answers to Odd Numbered Questions Index of Online Resources Bibliography Index.
Publisher: OUP USA
ISBN: 0195310764
Category : Mathematics
Languages : en
Pages : 766
Book Description
Preface 1. Mathematical Logic 2. Abstract Algebra 3. Number Theory 4. Real Analysis 5. Probability and Statistics 6. Graph Theory 7. Complex Analysis Answers to Questions Answers to Odd Numbered Questions Index of Online Resources Bibliography Index.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1884
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1884
Book Description
Bulletin of the Belgian Mathematical Society, Simon Stevin
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 602
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 602
Book Description
MUS - Mathematimus - Hyperelliptical Geometry
Author: Stenio Musich
Publisher: Stenio Musich
ISBN: 6500981073
Category : Mathematics
Languages : en
Pages : 1050
Book Description
M.U.S. (Mathematical Uniform Space) is a new number of π (pi), representing the reality of the Universe in which we live. With this number, we created a new geometry, Hyperelliptical Geometry, which will provide the unification of physics, thus uniting the Theory of Relativity and Quantum Theory. A new geometry for a new Mathematics and a new Physics. (ISBN 978-65-00-98107-0).
Publisher: Stenio Musich
ISBN: 6500981073
Category : Mathematics
Languages : en
Pages : 1050
Book Description
M.U.S. (Mathematical Uniform Space) is a new number of π (pi), representing the reality of the Universe in which we live. With this number, we created a new geometry, Hyperelliptical Geometry, which will provide the unification of physics, thus uniting the Theory of Relativity and Quantum Theory. A new geometry for a new Mathematics and a new Physics. (ISBN 978-65-00-98107-0).