Experimental Study and Mathematical Modeling of Enhanced Biological Phosphorus Removal Based on Aeration Effects

Experimental Study and Mathematical Modeling of Enhanced Biological Phosphorus Removal Based on Aeration Effects PDF Author: Parnian Izadi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Enhanced Biological Phosphorus Removal (EBPR), as a promising technology, has been implemented in many wastewater treatment plants (WWTP) worldwide, with high efficiency in phosphorus removal performance. In a well-operated EBPR, lower operational cost, reduced sludge production, and lower environmental impacts are achievable. Yet, with the proven capability of EBPR in efficient phosphorus removal, disturbance and periods of unexplained insufficient phosphorus removal have been detected in real WWTP in different cases due to loss of PAO biomass under presumed favorable conditions for EBPR. These complications may lead to process upset, system failure, and violation of discharge regulations. Disruption in process performance may originate from several external factors such as heavy rainfall, excessive nitrate loading to the anaerobic reactor, excessive aeration of activated sludge, or it may be a result of PAOs competition with other groups of microorganisms such as glycogen accumulating organisms (GAO). Therefore, the key in reaching low P-effluent levels is to optimize the operation and minimize the effect of inefficient factors. This Ph.D. study has focused on aeration as a crucial operational factor in the EBPR process in sequential batch reactor (SBR) systems. EBPR aerobic P-uptake, anaerobic P-release, and carbon storage of phosphorus accumulating organisms (PAOs) are closely related to oxygen mass transfer. The study is oriented to different aspects of aeration, addressing aeration concentration (dissolved oxygen (DO) concentration), aeration duration (aerobic hydraulic retention time (HRT)), and aeration pattern (continuous/intermittent). The performance of EBPR in SBRs under various aeration strategies was investigated for different DO concentrations (0.4-4 mg/L), HRT (120-320 minute), and aeration patterns of continuous and intermittent (25 to 50 minute on/off intermittent aeration/non-aeration intervals). Moreover, this study investigated the effect of reaching micro-aeration with adaptation strategies on EBPR performance. The development of steady and instant-DO reduction in different aeration strategies was studied in batch tests with enriched PAOs at different DO levels. Subsequently, comparative modeling using calibrated BioWin software was implemented for SBRs to predict the nutrient removal performance by changing DO concentration and the aerobic-HRT and understanding the effect of parameters on treatment performance to improve operation and control.

Experimental Study and Mathematical Modeling of Enhanced Biological Phosphorus Removal Based on Aeration Effects

Experimental Study and Mathematical Modeling of Enhanced Biological Phosphorus Removal Based on Aeration Effects PDF Author: Parnian Izadi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Enhanced Biological Phosphorus Removal (EBPR), as a promising technology, has been implemented in many wastewater treatment plants (WWTP) worldwide, with high efficiency in phosphorus removal performance. In a well-operated EBPR, lower operational cost, reduced sludge production, and lower environmental impacts are achievable. Yet, with the proven capability of EBPR in efficient phosphorus removal, disturbance and periods of unexplained insufficient phosphorus removal have been detected in real WWTP in different cases due to loss of PAO biomass under presumed favorable conditions for EBPR. These complications may lead to process upset, system failure, and violation of discharge regulations. Disruption in process performance may originate from several external factors such as heavy rainfall, excessive nitrate loading to the anaerobic reactor, excessive aeration of activated sludge, or it may be a result of PAOs competition with other groups of microorganisms such as glycogen accumulating organisms (GAO). Therefore, the key in reaching low P-effluent levels is to optimize the operation and minimize the effect of inefficient factors. This Ph.D. study has focused on aeration as a crucial operational factor in the EBPR process in sequential batch reactor (SBR) systems. EBPR aerobic P-uptake, anaerobic P-release, and carbon storage of phosphorus accumulating organisms (PAOs) are closely related to oxygen mass transfer. The study is oriented to different aspects of aeration, addressing aeration concentration (dissolved oxygen (DO) concentration), aeration duration (aerobic hydraulic retention time (HRT)), and aeration pattern (continuous/intermittent). The performance of EBPR in SBRs under various aeration strategies was investigated for different DO concentrations (0.4-4 mg/L), HRT (120-320 minute), and aeration patterns of continuous and intermittent (25 to 50 minute on/off intermittent aeration/non-aeration intervals). Moreover, this study investigated the effect of reaching micro-aeration with adaptation strategies on EBPR performance. The development of steady and instant-DO reduction in different aeration strategies was studied in batch tests with enriched PAOs at different DO levels. Subsequently, comparative modeling using calibrated BioWin software was implemented for SBRs to predict the nutrient removal performance by changing DO concentration and the aerobic-HRT and understanding the effect of parameters on treatment performance to improve operation and control.

Experimental Study and Mathematical Modeling of Enhanced Biological Phosphorus Removal Using Glucose as the Dominant Substrate

Experimental Study and Mathematical Modeling of Enhanced Biological Phosphorus Removal Using Glucose as the Dominant Substrate PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Experimental Study and Mathematical Modeling of Enhanced Biological Phosphorus Removal Using Glucose as the Dominant Substrate

Experimental Study and Mathematical Modeling of Enhanced Biological Phosphorus Removal Using Glucose as the Dominant Substrate PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Investigation of Enhanced Biological Phosphorus Removal at Different Temperatures

Investigation of Enhanced Biological Phosphorus Removal at Different Temperatures PDF Author: Liang-Ming Whang
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Get Book Here

Book Description


Mathematical Modelling and Computer Simulation of Activated Sludge Systems

Mathematical Modelling and Computer Simulation of Activated Sludge Systems PDF Author: Jacek Makinia
Publisher: IWA Publishing
ISBN: 1780409516
Category : Science
Languages : en
Pages : 682

Get Book Here

Book Description
Mathematical Modelling and Computer Simulation of Activated Sludge Systems – Second Edition provides, from the process engineering perspective, a comprehensive and up-to-date overview regarding various aspects of the mechanistic (“white box”) modelling and simulation of advanced activated sludge systems performing biological nutrient removal. In the new edition of the book, a special focus is given to nitrogen removal and the latest developments in modelling the innovative nitrogen removal processes. Furthermore, a new section on micropollutant removal has been added. The focus of modelling has been shifting in the last years to models that can describe the performance of a whole plant (plant-wide modelling). The expanded part of this new edition introduces models describing the most important processes interrelated with the mainstream activated sludge systems as well as models describing the energy balance, operating costs and environmental impact. The complex process evaluation, including minimization of energy consumption and carbon footprint, is in line with the present and future wastewater treatment goals. By combining a general introduction and a textbook, this book serves both intermediate and more experienced model users, both researchers and practitioners, as a comprehensive guide to modelling and simulation studies. The book can be used as a supplemental material at graduate and post-graduate levels of wastewater engineering/modelling courses.

Evaluation of Phosphorus Removal/recovery Processes During Municipal Wastewater Treatment

Evaluation of Phosphorus Removal/recovery Processes During Municipal Wastewater Treatment PDF Author: Rania Bashar
Publisher:
ISBN:
Category :
Languages : en
Pages : 107

Get Book Here

Book Description
With growing emphasis on environmental and economic sustainability worldwide, modern municipal wastewater treatment plants (WWTPs) are striving to reduce consumption of resources and ensure increased recycling and reuse of nutrients and energy contained in the wastewater. In a trade-off between enhanced P removal (to meet stringent effluent limits) and increased resource (e.g., energy, chemical) usage, it is critical for the treatment plants to be able to select the most appropriate technology. To this end, this study has combined mathematical modeling and experimental data from recent literature to perform a comprehensive evaluation of established/emerging P recovery/removal technologies considering technical, economic and energy sustainability aspects. For technical evaluations, full-scale designs of high performing P removal technologies (e.g., Modified University of Cape Towne process, Bardenpho process, membrane bioreactors, IFAS-EBPR, struvite recovery, tertiary reactive media filtration) were developed and simulated using a widely-used Windows-based process model simulating software BioWin v. 5.3 (EnviroSim Associates Ltd., Canada). The treatment configurations were evaluated in terms of performance and cost effectiveness ($/lb of P removed). Results show that the unit cost for P removal in different treatment alternatives range from $42.22 to $60.88 per lb of P removed. The MUCT BNR+ tertiary reactive media filtration proved to be one of the most cost effective configurations ($44.04/lb P removed) delivering an effluent with total P (TP) concentration of only 0.05 mg/L. Although struvite recovery resulted in significant reduction in biosolids P, the decrease in effluent TP was not sufficient to meet very stringent discharge standards. Emerging low energy mainline (LEM) treatment layouts consisting of energy efficient and innovative technologies has the potential to improve the overall sustainability of WWTPs. To evaluate the LEM treatment schemes, a configuration consisting of fine screen pretreatment, anaerobic membrane bioreactor (AnMBR) for BOD and TSS removal, reactive filter media for adsorptive P removal, and cold partial nitritation/Anammox process for N removal was simulated using operational conditions that are typical for a mid-size WWTP in the US. Our simulation results indicated that the LEM scheme could reduce the net energy requirement for treatment by about 0.46 kWh/m3 (~ 94%) compared to a conventional activated sludge system. The removal efficiencies of TN, TP and TCOD in the effluent were 93%, 90% and 94%, respectively. One-at-a-time (OAT) sensitivity analysis indicated that dominant parameters controlling energy production and consumption include temperature, wastewater influent COD, and electric efficiency of combined heat and power (CHP) engine. The LEM treatment scheme reached a break-even point (energy-self-sufficiency) at 544 mg/L COD and 38% electric efficiency of the CHP engine. The OAT analysis was further expanded using global sensitivity analysis (GSA) techniques to identify the within parameter interactions. The GSA revealed CHP efficiency has a predominantly linear (non-interacting with other inputs) impact on the net energy requirement and has the potential to be a very good control parameter in achieving energy self-sufficiency. In addition, a solution space for energy-positive operation was also identified in this study where minimum non-linear interaction between input parameters is present. Therefore, operating the treatment plant within this linear region ensures maximum control over net energy requirement, while staying within the energy positive range. The results of this study will provide guidance for researchers, municipalities, government agencies and decision-makers, and other stake-holders in choosing the most appropriate P removal option that offer the possibility to move wastewater treatment towards a sustainable, energy- and resource-positive direction.

Enhanced Biological Phosphorus Removal: Modelling and Experimental Design

Enhanced Biological Phosphorus Removal: Modelling and Experimental Design PDF Author: Danielle Baetens
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Get Book Here

Book Description


Mathematical Modelling and Computer Simulation of Activated Sludge Systems

Mathematical Modelling and Computer Simulation of Activated Sludge Systems PDF Author: Jacek Makinia
Publisher: IWA Publishing
ISBN: 1843392380
Category : Science
Languages : en
Pages : 401

Get Book Here

Book Description
This international, comprehensive guide to modeling and simulation studies in activated sludge systems leads the reader through the entire modeling process – from building a mechanistic model to applying the model in practice. Mathematical Modelling and Computer Simulation of Activated Sludge Systems will: Enhance the readers’ understanding of different model concepts for several (most essential) biochemical processes in the advanced activated sludge systems Provide extensive and up-to-date coverage of experimental methodologies of a complete model parameter estimation (longitudinal dispersion coefficient, influent wastewater fractions, kinetic and stoichiometric coefficients, settling velocity, etc.) Summarize and critically review the ranges of model parameters reported in literature Compare the existing protocols aiming at a systematic organization of the simulation study Outline the capabilities of the existing commercial simulators Present documented, successful case studies of practical model applications as a guide while planning a simulation study. The book is organized to provide a general background and some basic definitions, then theoretical aspects of modeling and finally, the issues important for practical model applications. Mathematical Modelling and Computer Simulation of Activated Sludge Systems can be used as supplementary material for a graduate level wastewater engineering courses and is useful to a wide audience of researchers and practitioners. Experienced model users such as consultants, trained plant management staff may find the book useful as a reference and as a resource for self-guided study. Visit the IWA WaterWiki to read and share material related to this title: http://www.iwawaterwiki.org/xwiki/bin/view/Articles/MathmematicalModellingandActivatedSludgeSystems

Fixed Bed Hybrid Bioreactor

Fixed Bed Hybrid Bioreactor PDF Author: Sushovan Sarkar
Publisher: Springer Nature
ISBN: 9813345462
Category : Science
Languages : en
Pages : 130

Get Book Here

Book Description
This book describes a simplified approach to the modelling and process design of a fixed bed hybrid bioreactor for wastewater treatment. In this work a simplified model for hybrid bioreactor is developed to determine output parameters like exiting substrate concentration in bulk liquid, average substrate flux in the biofilm, effective and total biofilm thickness. The model is based on mass balance of both carbonaceous substrate and biomass under suspended and attached growth simultaneously along with substrate mass transport into the biofilm. The proposed model has also been validated with the results obtained from experimental study with municipal wastewater considering as a low strength wastewater with no inhibition. There is a flexibility of the proposed model making it a versatile one to find out the exiting substrate concentration both in hybrid bioreactor as well as in a completely mixed biofilm reactor (CMBR). The book caters to academics and practitioners working in the field of advanced wastewater treatment.

Aerobic Granular Sludge

Aerobic Granular Sludge PDF Author: S. Bathe
Publisher: IWA Publishing
ISBN: 9781843395096
Category : Science
Languages : en
Pages : 186

Get Book Here

Book Description
Aerobic Granular Sludge has recently received growing attention by researchers and technology developers, worldwide. Laboratory studies and preliminary field tests led to the conclusion that granular activated sludge can be readily established and profitably used in activated sludge plants, provided 'correct' process conditions are chosen. But what makes process conditions 'correct'? And what makes granules different from activated sludge flocs? Answers to these question are offered in Aerobic Granular Sludge. Major topics covered in this book include: Reasons and mechanism of aerobic granule formation Structure of the microbial population of aerobic granules Role, composition and physical properties of EPS Diffuse limitation and microbial activity within granules Physio-chemical characteristics Operation and application of granule reactors Scale-up aspects of granular sludge reactors, and case studies Aerobic Granular Sludge provides up-to-date information about a rapidly emerging new technology of biological treatment.