Experimental Investigation of Shock Transfer and Shock Initiated Detonation in a Dual Pulse Detonation Engine Crossover System

Experimental Investigation of Shock Transfer and Shock Initiated Detonation in a Dual Pulse Detonation Engine Crossover System PDF Author: Robert B. Driscoll
Publisher:
ISBN:
Category :
Languages : en
Pages : 105

Get Book Here

Book Description
An experimental investigation was carried out to study the travel of a shockwave through a crossover tube and analyze the ability to cause shock initiated detonation. This concept involved using a pulse detonation engine (PDE) as a driver to produce a shockwave. This shockwave travelled to a second, adjacent detonation tube. In this driven PDE, the shockwave would reflect off of the inner, concaved wall causing shock initiated detonation. A preliminary study using a dual PDE crossover tube system yielded experimental results that have shown successful cases where reflected shockwaves are used to cause direct detonation initiation. For that study, two reactant-filled PDEs were connected through an air-filled crossover tube, with the driver PDE ignited. High speed pressure sensors were used to verify combustion wave speeds. Preliminary results showed shock initiated detonation to be possible when using a dual PDE crossover system. Additionally, a parametric study was carried out to investigate shock initiated detonation within a dual PDE crossover system. Shockwaves produced by a driver PDE were carried through crossover tubes of varying lengths and bends to the driven PDE. The driving PDE was ignited using a traditional spark plug. From burning wave speeds measured by high speed pressure sensors, results have shown a transferred shockwave reflecting off the wall of the driven PDE will achieve shock initiated detonation. However, the results have also yielded cases where the initial shockwave reflection does not directly initiate a detonation in the driven PDE, but rather causes ignition leading to accelerated deflagration to detonation transition (DDT). Overall results have shown that for specific tube geometries, there is a maximum effective crossover tube length in which shock initiated detonation is possible. Furthermore, shadowgraph techniques were used to capture and study the propagation of a transferred shockwave produced by a driving detonation tube. To accomplish this, a single PDE was used to drive a shockwave through a clear, composite, transfer tube. Shock attenuation data was gathered during this study. This information created a relation between shock strength and crossover tube length. Also, regardless of the filling conditions of the transfer tube, all shock waves reach similar attenuation rates at relatively the same transfer tube length. Moreover, a vortex plume study was carried out to capture and study shock Mach number decay as a planar shockwave transitions to a spherical shockwave at the exit of a transfer tube. Transfer tubes of varying lengths and bends were used in the study. General Attenuation Law was used to further understand the relation between spherical shock strength and propagation distance. Results showed that a bend placed at the end of the transfer tube enhances the strength of a planar shockwave. Finally, with the aid of the two shadowgraph experiments, a correlation between maximum effective crossover tube length and shock strength was created. Performance in the driven PDE begins to decrease when the incident shock strength decreases below M = 2.0.

Experimental Investigation of Shock Transfer and Shock Initiated Detonation in a Dual Pulse Detonation Engine Crossover System

Experimental Investigation of Shock Transfer and Shock Initiated Detonation in a Dual Pulse Detonation Engine Crossover System PDF Author: Robert B. Driscoll
Publisher:
ISBN:
Category :
Languages : en
Pages : 105

Get Book Here

Book Description
An experimental investigation was carried out to study the travel of a shockwave through a crossover tube and analyze the ability to cause shock initiated detonation. This concept involved using a pulse detonation engine (PDE) as a driver to produce a shockwave. This shockwave travelled to a second, adjacent detonation tube. In this driven PDE, the shockwave would reflect off of the inner, concaved wall causing shock initiated detonation. A preliminary study using a dual PDE crossover tube system yielded experimental results that have shown successful cases where reflected shockwaves are used to cause direct detonation initiation. For that study, two reactant-filled PDEs were connected through an air-filled crossover tube, with the driver PDE ignited. High speed pressure sensors were used to verify combustion wave speeds. Preliminary results showed shock initiated detonation to be possible when using a dual PDE crossover system. Additionally, a parametric study was carried out to investigate shock initiated detonation within a dual PDE crossover system. Shockwaves produced by a driver PDE were carried through crossover tubes of varying lengths and bends to the driven PDE. The driving PDE was ignited using a traditional spark plug. From burning wave speeds measured by high speed pressure sensors, results have shown a transferred shockwave reflecting off the wall of the driven PDE will achieve shock initiated detonation. However, the results have also yielded cases where the initial shockwave reflection does not directly initiate a detonation in the driven PDE, but rather causes ignition leading to accelerated deflagration to detonation transition (DDT). Overall results have shown that for specific tube geometries, there is a maximum effective crossover tube length in which shock initiated detonation is possible. Furthermore, shadowgraph techniques were used to capture and study the propagation of a transferred shockwave produced by a driving detonation tube. To accomplish this, a single PDE was used to drive a shockwave through a clear, composite, transfer tube. Shock attenuation data was gathered during this study. This information created a relation between shock strength and crossover tube length. Also, regardless of the filling conditions of the transfer tube, all shock waves reach similar attenuation rates at relatively the same transfer tube length. Moreover, a vortex plume study was carried out to capture and study shock Mach number decay as a planar shockwave transitions to a spherical shockwave at the exit of a transfer tube. Transfer tubes of varying lengths and bends were used in the study. General Attenuation Law was used to further understand the relation between spherical shock strength and propagation distance. Results showed that a bend placed at the end of the transfer tube enhances the strength of a planar shockwave. Finally, with the aid of the two shadowgraph experiments, a correlation between maximum effective crossover tube length and shock strength was created. Performance in the driven PDE begins to decrease when the incident shock strength decreases below M = 2.0.

Investigation of Sustained Detonation Devices

Investigation of Sustained Detonation Devices PDF Author: Robert B. Driscoll
Publisher:
ISBN:
Category :
Languages : en
Pages : 241

Get Book Here

Book Description
An experimental study is conducted on a Pulse Detonation Engine-Crossover System to investigate the feasibility of repeated, shock-initiated combustion and characterize the initiation performance. A PDE-crossover system can decrease deflagration-to-detonation transition length while employing a single spark source to initiate a multi-PDE system. Visualization of a transferred shock wave propagating through a clear channel reveals a complex shock train behind the leading shock. Shock wave Mach number and decay rate remains constant for varying crossover tube geometries and operational frequencies. A temperature gradient forms within the crossover tube due to forward flow of high temperature ionized gas into the crossover tube from the driver PDE and backward flow of ionized gas into the crossover tube from the driven PDE, which can cause intermittent auto-ignition of the driver PDE. Initiation performance in the driven PDE is strongly dependent on initial driven PDE skin temperature in the shock wave reflection region. An array of detonation tubes connected with crossover tubes is developed using optimized parameters and successful operation utilizing shock-initiated combustion through shock wave reflection is achieved and sustained. Finally, an air-breathing, PDE-Crossover System is developed to characterize the feasibility of shock-initiated combustion within an air-breathing pulse detonation engine. The initiation effectiveness of shock-initiated combustion is compared to spark discharge and detonation injection through a pre-detonator. In all cases, shock-initiated combustion produces improved initiation performance over spark discharge and comparable detonation transition run-up lengths relative to pre-detonator initiation. A computational study characterizes the mixing processes and injection flow field within a rotating detonation engine. Injection parameters including reactant flow rate, reactant injection area, placement of the fuel injection, and fuel injection distribution are varied to assess the impact on mixing. Decreasing reactant injection areas improves fuel penetration into the cross-flowing air stream, enhances turbulent diffusion of the fuel within the annulus, and increases local equivalence ratio and fluid mixedness. Staggering fuel injection holes produces a decrease in mixing when compared to collinear fuel injection. Finally, emulating nozzle integration by increasing annulus back-pressure increases local equivalence ratio in the injection region due to increased convection residence time.

An Experimental Investigation of Shock Initiated Detonation Waves in a Flowing Combustible Mixture

An Experimental Investigation of Shock Initiated Detonation Waves in a Flowing Combustible Mixture PDF Author: Leonard Anthony Hamilton
Publisher:
ISBN:
Category : Shock waves
Languages : en
Pages : 0

Get Book Here

Book Description


Detonation Control for Propulsion

Detonation Control for Propulsion PDF Author: Jiun-Ming Li
Publisher: Springer
ISBN: 3319689061
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.

Experimental Investigation of the Initiation of Detonation Behind a Reflected Shock Wave

Experimental Investigation of the Initiation of Detonation Behind a Reflected Shock Wave PDF Author: Thomas John Krusic
Publisher:
ISBN:
Category :
Languages : en
Pages : 96

Get Book Here

Book Description
The purpose of this work was to develop an experimental apparatus for the study of the initiation of detonation in a gaseous medium as a result of shock compression. The design of the apparatus is described, and results of some preliminary experiments are reported. They indicate that the mechanism of the initiation process behind reflected waves in a shock tube is essentially different than that caused by an accelerating flame. (Author).

Experimental Investigation of Detonation Re-initiation Mechanisms Following a Mach Reflection of a Quenched Detonation

Experimental Investigation of Detonation Re-initiation Mechanisms Following a Mach Reflection of a Quenched Detonation PDF Author: Rohit Ranjan Bhattacharjee
Publisher:
ISBN:
Category : Detonation waves
Languages : en
Pages :

Get Book Here

Book Description
Detonation waves are supersonic combustion waves that have a multi-shock front structure followed by a spatially non-uniform reaction zone. During propagation, a de-coupled shock-flame complex is periodically re-initiated into an overdriven detonation following a transient Mach reflection process. Past researchers have identified mechanisms that can increase combustion rates and cause localized hot spot re-ignition behind the Mach shock. But due to the small length scales and stochastic behaviour of detonation waves, the important mechanisms that can lead to re-initiation into a detonation requires further clarification. If a detonation is allowed to diffract behind an obstacle, it can quench to form a de-coupled shock-flame complex and if allowed to form a Mach reflection, re-initiation of a detonation can occur. The use of this approach permits the study of re-initiation mechanisms reproducibly with relatively large length scales. The objective of this study is to experimentally elucidate the key mechanisms that can increase chemical reaction rates and sequentially lead to re-initiation of a de-coupled shock-flame complex into an overdriven detonation wave following a Mach reflection. All experiments were carried out in a thin rectangular channel using a stoichiometric mixture of oxy-methane. Three different types of obstacles were used - a half-cylinder, a roughness plate along with the half-cylinder and a full-cylinder. Schlieren visualization was achieved by using a Z-configuration setup, a high speed camera and a high intensity light source. Results indicate that forward jetting of the slip line behind the Mach stem can potentially increase combustion rates by entraining hot burned gas into unburned gas. Following ignition and jet entrainment, a detonation wave first appears along the Mach stem. The transverse wave can form a detonation wave due to rapid combustion of unburned gas which may be attributed to shock interaction with the unburned gas. Alternatively, the Kelvin-Helmholtz instability can produce vortices along the slipline that may lead to mixing between burned-unburned gases and potentially increase combustion rates near the transverse wave. However, the mechanism(s) that causes the transverse wave to re-initiate into a detonation wave remains to be satisfactorily resolved.

Toward Detonation Theory

Toward Detonation Theory PDF Author: Anatoly N. Dremin
Publisher: Springer Science & Business Media
ISBN: 1461205638
Category : Technology & Engineering
Languages : en
Pages : 163

Get Book Here

Book Description
It is known that the Chapman-Jouguet theory of detonation is based on the assumption of an instantaneous and complete transformation of explosives into detonation products in the wave front. Therefore, one should not expect from the theory any interpretations of the detonation limits, such as shock initiation of det onation and kinetic instability and propagation (failure diameter). The Zeldovich-Von Neuman-Doring (ZND) theory of detonation appeared, in fact, as a response to the need for a theory capable of interpreting such limits, and the ZND detonation theory gave qualitative interpretations to the detonation limits. These interpretations were based essentially on the theoretical notion that the mechanism of explosives transformation at detonation is a combustion of a layer of finite thickness of shock-compressed explosive behind the wave shock front with the velocity of the front. However, some experimental findings turned out to be inconsistent with the the ory. A very small change of homogeneous (liquid) explosives detonation velocity with explosive charge diameter near the rather sizable failure diameter is one of the findings. The elucidation of the nature of this finding has led to the discovery of a new phenomenon. This phenomenon has come to be known as the breakdown (BD) of the explosive self-ignition behind the front of shock waves under the effect of rarefaction waves.

Development of a Gas-Fed Pulse Detonation Research Engine

Development of a Gas-Fed Pulse Detonation Research Engine PDF Author: R. J. Litchford
Publisher:
ISBN:
Category : Detonation waves
Languages : en
Pages : 52

Get Book Here

Book Description


Shock Wave Science and Technology Reference Library, Vol.4

Shock Wave Science and Technology Reference Library, Vol.4 PDF Author: F. Zhang
Publisher: Springer Science & Business Media
ISBN: 3540884475
Category : Science
Languages : en
Pages : 407

Get Book Here

Book Description
The fourth of several volumes on solids in this series, the six extensive chapters here are more specifically concerned with detonation and shock compression waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases.

Direct Initiation Through Detonation Branching in a Pulsed Detonation Engine

Direct Initiation Through Detonation Branching in a Pulsed Detonation Engine PDF Author: Alexander R. Hausman
Publisher:
ISBN:
Category : Detonation waves
Languages : en
Pages : 158

Get Book Here

Book Description