Exercises in Numerical Linear Algebra and Matrix Factorizations

Exercises in Numerical Linear Algebra and Matrix Factorizations PDF Author: Tom Lyche
Publisher: Springer Nature
ISBN: 303059789X
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
To put the world of linear algebra to advanced use, it is not enough to merely understand the theory; there is a significant gap between the theory of linear algebra and its myriad expressions in nearly every computational domain. To bridge this gap, it is essential to process the theory by solving many exercises, thus obtaining a firmer grasp of its diverse applications. Similarly, from a theoretical perspective, diving into the literature on advanced linear algebra often reveals more and more topics that are deferred to exercises instead of being treated in the main text. As exercises grow more complex and numerous, it becomes increasingly important to provide supporting material and guidelines on how to solve them, supporting students’ learning process. This book provides precisely this type of supporting material for the textbook “Numerical Linear Algebra and Matrix Factorizations,” published as Vol. 22 of Springer’s Texts in Computational Science and Engineering series. Instead of omitting details or merely providing rough outlines, this book offers detailed proofs, and connects the solutions to the corresponding results in the textbook. For the algorithmic exercises the utmost level of detail is provided in the form of MATLAB implementations. Both the textbook and solutions are self-contained. This book and the textbook are of similar length, demonstrating that solutions should not be considered a minor aspect when learning at advanced levels.

Exercises in Numerical Linear Algebra and Matrix Factorizations

Exercises in Numerical Linear Algebra and Matrix Factorizations PDF Author: Tom Lyche
Publisher: Springer Nature
ISBN: 303059789X
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
To put the world of linear algebra to advanced use, it is not enough to merely understand the theory; there is a significant gap between the theory of linear algebra and its myriad expressions in nearly every computational domain. To bridge this gap, it is essential to process the theory by solving many exercises, thus obtaining a firmer grasp of its diverse applications. Similarly, from a theoretical perspective, diving into the literature on advanced linear algebra often reveals more and more topics that are deferred to exercises instead of being treated in the main text. As exercises grow more complex and numerous, it becomes increasingly important to provide supporting material and guidelines on how to solve them, supporting students’ learning process. This book provides precisely this type of supporting material for the textbook “Numerical Linear Algebra and Matrix Factorizations,” published as Vol. 22 of Springer’s Texts in Computational Science and Engineering series. Instead of omitting details or merely providing rough outlines, this book offers detailed proofs, and connects the solutions to the corresponding results in the textbook. For the algorithmic exercises the utmost level of detail is provided in the form of MATLAB implementations. Both the textbook and solutions are self-contained. This book and the textbook are of similar length, demonstrating that solutions should not be considered a minor aspect when learning at advanced levels.

Numerical Linear Algebra and Matrix Factorizations

Numerical Linear Algebra and Matrix Factorizations PDF Author: Tom Lyche
Publisher: Springer Nature
ISBN: 3030364682
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
After reading this book, students should be able to analyze computational problems in linear algebra such as linear systems, least squares- and eigenvalue problems, and to develop their own algorithms for solving them. Since these problems can be large and difficult to handle, much can be gained by understanding and taking advantage of special structures. This in turn requires a good grasp of basic numerical linear algebra and matrix factorizations. Factoring a matrix into a product of simpler matrices is a crucial tool in numerical linear algebra, because it allows us to tackle complex problems by solving a sequence of easier ones. The main characteristics of this book are as follows: It is self-contained, only assuming that readers have completed first-year calculus and an introductory course on linear algebra, and that they have some experience with solving mathematical problems on a computer. The book provides detailed proofs of virtually all results. Further, its respective parts can be used independently, making it suitable for self-study. The book consists of 15 chapters, divided into five thematically oriented parts. The chapters are designed for a one-week-per-chapter, one-semester course. To facilitate self-study, an introductory chapter includes a brief review of linear algebra.

Numerical Linear Algebra for Applications in Statistics

Numerical Linear Algebra for Applications in Statistics PDF Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 1461206235
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description
Accurate and efficient computer algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Regardless of the software system used, the book describes and gives examples of the use of modern computer software for numerical linear algebra. It begins with a discussion of the basics of numerical computations, and then describes the relevant properties of matrix inverses, factorisations, matrix and vector norms, and other topics in linear algebra. The book is essentially self- contained, with the topics addressed constituting the essential material for an introductory course in statistical computing. Numerous exercises allow the text to be used for a first course in statistical computing or as supplementary text for various courses that emphasise computations.

Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra PDF Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477

Get Book Here

Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Matrix Algebra

Matrix Algebra PDF Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 0387708723
Category : Computers
Languages : en
Pages : 536

Get Book Here

Book Description
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases

An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases PDF Author: Francis X. Giraldo
Publisher: Springer Nature
ISBN: 3030550699
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations.

Numerical Matrix Analysis

Numerical Matrix Analysis PDF Author: Ilse C. F. Ipsen
Publisher: SIAM
ISBN: 0898716764
Category : Mathematics
Languages : en
Pages : 135

Get Book Here

Book Description
Matrix analysis presented in the context of numerical computation at a basic level.

Numerical Linear Algebra

Numerical Linear Algebra PDF Author: Lloyd N. Trefethen
Publisher: SIAM
ISBN: 1611977169
Category : Mathematics
Languages : en
Pages : 387

Get Book Here

Book Description
Since its original appearance in 1997, Numerical Linear Algebra has been a leading textbook in its field, used in universities around the world. It is noted for its 40 lecture-sized short chapters and its clear and inviting style. It is reissued here with a new foreword by James Nagy and a new afterword by Yuji Nakatsukasa about subsequent developments.

Introduction to Computational Linear Algebra

Introduction to Computational Linear Algebra PDF Author: Nabil Nassif
Publisher: CRC Press
ISBN: 1482258714
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Teach Your Students Both the Mathematics of Numerical Methods and the Art of Computer ProgrammingIntroduction to Computational Linear Algebra presents classroom-tested material on computational linear algebra and its application to numerical solutions of partial and ordinary differential equations. The book is designed for senior undergraduate stud

Finite-Dimensional Linear Algebra

Finite-Dimensional Linear Algebra PDF Author: Mark S. Gockenbach
Publisher: CRC Press
ISBN: 143981564X
Category : Mathematics
Languages : en
Pages : 674

Get Book Here

Book Description
Linear algebra forms the basis for much of modern mathematics—theoretical, applied, and computational. Finite-Dimensional Linear Algebra provides a solid foundation for the study of advanced mathematics and discusses applications of linear algebra to such diverse areas as combinatorics, differential equations, optimization, and approximation. The author begins with an overview of the essential themes of the book: linear equations, best approximation, and diagonalization. He then takes students through an axiomatic development of vector spaces, linear operators, eigenvalues, norms, and inner products. In addition to discussing the special properties of symmetric matrices, he covers the Jordan canonical form, an important theoretical tool, and the singular value decomposition, a powerful tool for computation. The final chapters present introductions to numerical linear algebra and analysis in vector spaces, including a brief introduction to functional analysis (infinite-dimensional linear algebra). Drawing on material from the author’s own course, this textbook gives students a strong theoretical understanding of linear algebra. It offers many illustrations of how linear algebra is used throughout mathematics.