Author: Peter Tannenbaum
Publisher: Pearson
ISBN: 9780321825735
Category : Mathematics
Languages : en
Pages : 0
Book Description
"Disability and Academic Exclusion interrogates obstacles the disabled have encountered in education, from a historical perspective that begins with the denial of literacy to minorities in the colonial era to the later centuries' subsequent intolerance of writing, orality, and literacy mastered by former slaves, women, and the disabled. The text then questions where we stand today in regards to the university-wide rhetoric on promoting diversity and accommodating disability in the classroom." Amazon.com viewed 6/2/2020.
Excursions in Modern Mathematics
Author: Peter Tannenbaum
Publisher: Pearson
ISBN: 9780321825735
Category : Mathematics
Languages : en
Pages : 0
Book Description
"Disability and Academic Exclusion interrogates obstacles the disabled have encountered in education, from a historical perspective that begins with the denial of literacy to minorities in the colonial era to the later centuries' subsequent intolerance of writing, orality, and literacy mastered by former slaves, women, and the disabled. The text then questions where we stand today in regards to the university-wide rhetoric on promoting diversity and accommodating disability in the classroom." Amazon.com viewed 6/2/2020.
Publisher: Pearson
ISBN: 9780321825735
Category : Mathematics
Languages : en
Pages : 0
Book Description
"Disability and Academic Exclusion interrogates obstacles the disabled have encountered in education, from a historical perspective that begins with the denial of literacy to minorities in the colonial era to the later centuries' subsequent intolerance of writing, orality, and literacy mastered by former slaves, women, and the disabled. The text then questions where we stand today in regards to the university-wide rhetoric on promoting diversity and accommodating disability in the classroom." Amazon.com viewed 6/2/2020.
Excursions in Geometry
Author: Charles Stanley Ogilvy
Publisher: Courier Corporation
ISBN: 0486265307
Category : Mathematics
Languages : en
Pages : 191
Book Description
A straightedge, compass, and a little thought are all that's needed to discover the intellectual excitement of geometry. Harmonic division and Apollonian circles, inversive geometry, hexlet, Golden Section, more. 132 illustrations.
Publisher: Courier Corporation
ISBN: 0486265307
Category : Mathematics
Languages : en
Pages : 191
Book Description
A straightedge, compass, and a little thought are all that's needed to discover the intellectual excitement of geometry. Harmonic division and Apollonian circles, inversive geometry, hexlet, Golden Section, more. 132 illustrations.
Mathematical Excursions to the World's Great Buildings
Author: Alexander J. Hahn
Publisher: Princeton University Press
ISBN: 1400841992
Category : Mathematics
Languages : en
Pages : 336
Book Description
How mathematics helped build the world's most important buildings from early Egypt to the present From the pyramids and the Parthenon to the Sydney Opera House and the Bilbao Guggenheim, this book takes readers on an eye-opening tour of the mathematics behind some of the world's most spectacular buildings. Beautifully illustrated, the book explores the milestones in elementary mathematics that enliven the understanding of these buildings and combines this with an in-depth look at their aesthetics, history, and structure. Whether using trigonometry and vectors to explain why Gothic arches are structurally superior to Roman arches, or showing how simple ruler and compass constructions can produce sophisticated architectural details, Alexander Hahn describes the points at which elementary mathematics and architecture intersect. Beginning in prehistoric times, Hahn proceeds to guide readers through the Greek, Roman, Islamic, Romanesque, Gothic, Renaissance, and modern styles. He explores the unique features of the Pantheon, the Hagia Sophia, the Great Mosque of Cordoba, the Duomo in Florence, Palladio's villas, and Saint Peter's Basilica, as well as the U.S. Capitol Building. Hahn celebrates the forms and structures of architecture made possible by mathematical achievements from Greek geometry, the Hindu-Arabic number system, two- and three-dimensional coordinate geometry, and calculus. Along the way, Hahn introduces groundbreaking architects, including Brunelleschi, Alberti, da Vinci, Bramante, Michelangelo, della Porta, Wren, Gaudí, Saarinen, Utzon, and Gehry. Rich in detail, this book takes readers on an expedition around the globe, providing a deeper understanding of the mathematical forces at play in the world's most elegant buildings.
Publisher: Princeton University Press
ISBN: 1400841992
Category : Mathematics
Languages : en
Pages : 336
Book Description
How mathematics helped build the world's most important buildings from early Egypt to the present From the pyramids and the Parthenon to the Sydney Opera House and the Bilbao Guggenheim, this book takes readers on an eye-opening tour of the mathematics behind some of the world's most spectacular buildings. Beautifully illustrated, the book explores the milestones in elementary mathematics that enliven the understanding of these buildings and combines this with an in-depth look at their aesthetics, history, and structure. Whether using trigonometry and vectors to explain why Gothic arches are structurally superior to Roman arches, or showing how simple ruler and compass constructions can produce sophisticated architectural details, Alexander Hahn describes the points at which elementary mathematics and architecture intersect. Beginning in prehistoric times, Hahn proceeds to guide readers through the Greek, Roman, Islamic, Romanesque, Gothic, Renaissance, and modern styles. He explores the unique features of the Pantheon, the Hagia Sophia, the Great Mosque of Cordoba, the Duomo in Florence, Palladio's villas, and Saint Peter's Basilica, as well as the U.S. Capitol Building. Hahn celebrates the forms and structures of architecture made possible by mathematical achievements from Greek geometry, the Hindu-Arabic number system, two- and three-dimensional coordinate geometry, and calculus. Along the way, Hahn introduces groundbreaking architects, including Brunelleschi, Alberti, da Vinci, Bramante, Michelangelo, della Porta, Wren, Gaudí, Saarinen, Utzon, and Gehry. Rich in detail, this book takes readers on an expedition around the globe, providing a deeper understanding of the mathematical forces at play in the world's most elegant buildings.
Excursions in Number Theory
Author: Charles Stanley Ogilvy
Publisher: Courier Corporation
ISBN: 9780486257785
Category : Mathematics
Languages : en
Pages : 196
Book Description
Challenging, accessible mathematical adventures involving prime numbers, number patterns, irrationals and iterations, calculating prodigies, and more. No special training is needed, just high school mathematics and an inquisitive mind. "A splendidly written, well selected and presented collection. I recommend the book unreservedly to all readers." — Martin Gardner.
Publisher: Courier Corporation
ISBN: 9780486257785
Category : Mathematics
Languages : en
Pages : 196
Book Description
Challenging, accessible mathematical adventures involving prime numbers, number patterns, irrationals and iterations, calculating prodigies, and more. No special training is needed, just high school mathematics and an inquisitive mind. "A splendidly written, well selected and presented collection. I recommend the book unreservedly to all readers." — Martin Gardner.
Excursions in Classical Analysis
Author: Hongwei Chen
Publisher: American Mathematical Soc.
ISBN: 0883859351
Category : Mathematics
Languages : en
Pages : 317
Book Description
Excursions in Classical Analysis will introduce students to advanced problem solving and undergraduate research in two ways: it will provide a tour of classical analysis, showcasing a wide variety of problems that are placed in historical context, and it will help students gain mastery of mathematical discovery and proof. The [Author]; presents a variety of solutions for the problems in the book. Some solutions reach back to the work of mathematicians like Leonhard Euler while others connect to other beautiful parts of mathematics. Readers will frequently see problems solved by using an idea that, at first glance, might not even seem to apply to that problem. Other solutions employ a specific technique that can be used to solve many different kinds of problems. Excursions emphasizes the rich and elegant interplay between continuous and discrete mathematics by applying induction, recursion, and combinatorics to traditional problems in classical analysis. The book will be useful in students' preparations for mathematics competitions, in undergraduate reading courses and seminars, and in analysis courses as a supplement. The book is also ideal for self study, since the chapters are independent of one another and may be read in any order.
Publisher: American Mathematical Soc.
ISBN: 0883859351
Category : Mathematics
Languages : en
Pages : 317
Book Description
Excursions in Classical Analysis will introduce students to advanced problem solving and undergraduate research in two ways: it will provide a tour of classical analysis, showcasing a wide variety of problems that are placed in historical context, and it will help students gain mastery of mathematical discovery and proof. The [Author]; presents a variety of solutions for the problems in the book. Some solutions reach back to the work of mathematicians like Leonhard Euler while others connect to other beautiful parts of mathematics. Readers will frequently see problems solved by using an idea that, at first glance, might not even seem to apply to that problem. Other solutions employ a specific technique that can be used to solve many different kinds of problems. Excursions emphasizes the rich and elegant interplay between continuous and discrete mathematics by applying induction, recursion, and combinatorics to traditional problems in classical analysis. The book will be useful in students' preparations for mathematics competitions, in undergraduate reading courses and seminars, and in analysis courses as a supplement. The book is also ideal for self study, since the chapters are independent of one another and may be read in any order.
Mathematical Excursions
Author: Richard N. Aufmann
Publisher:
ISBN: 9780618386390
Category : Mathematics
Languages : en
Pages : 913
Book Description
Developed for the liberal arts math course by a seasoned author team,Mathematical Excursions,is uniquely designed to help students see math at work in the contemporary world. Using the proven Aufmann Interactive Method, students learn to master problem-solving in meaningful contexts. In addition, multi-partExcursionexercises emphasize collaborative learning. The text's extensive topical coverage offers instructors flexibility in designing a course that meets their students' needs and curriculum requirements. TheExcursionsactivity and correspondingExcursion Exercises,denoted by an icon, conclude each section, providing opportunities for in-class cooperative work, hands-on learning, and development of critical-thinking skills. These activities are also ideal for projects or extra credit assignments. TheExcursionsare designed to reinforce the material that has just been covered in the section in a fun and engaging manner that will enhance a student's journey and discovery of mathematics. The proven Aufmann Interactive Method ensures that students try concepts and manipulate real-life data as they progress through the material. Every objective contains at least one set of matched-pair examples. The method begins with a worked-out example with a solution in numerical and verbal formats to address different learning styles. The matched problem, calledCheck Your Progress,is left for the student to try. Each problem includes a reference to a fully worked out solution in an appendix to which the student can refer for immediate feedback, concept reinforcement, identification of problem areas, and prevention of frustration. Eduspace, powered by Blackboard, for the Aufmann/Lockwood/Nation/CleggMath Excursionscourse features algorithmic exercises and test bank content in question pools.
Publisher:
ISBN: 9780618386390
Category : Mathematics
Languages : en
Pages : 913
Book Description
Developed for the liberal arts math course by a seasoned author team,Mathematical Excursions,is uniquely designed to help students see math at work in the contemporary world. Using the proven Aufmann Interactive Method, students learn to master problem-solving in meaningful contexts. In addition, multi-partExcursionexercises emphasize collaborative learning. The text's extensive topical coverage offers instructors flexibility in designing a course that meets their students' needs and curriculum requirements. TheExcursionsactivity and correspondingExcursion Exercises,denoted by an icon, conclude each section, providing opportunities for in-class cooperative work, hands-on learning, and development of critical-thinking skills. These activities are also ideal for projects or extra credit assignments. TheExcursionsare designed to reinforce the material that has just been covered in the section in a fun and engaging manner that will enhance a student's journey and discovery of mathematics. The proven Aufmann Interactive Method ensures that students try concepts and manipulate real-life data as they progress through the material. Every objective contains at least one set of matched-pair examples. The method begins with a worked-out example with a solution in numerical and verbal formats to address different learning styles. The matched problem, calledCheck Your Progress,is left for the student to try. Each problem includes a reference to a fully worked out solution in an appendix to which the student can refer for immediate feedback, concept reinforcement, identification of problem areas, and prevention of frustration. Eduspace, powered by Blackboard, for the Aufmann/Lockwood/Nation/CleggMath Excursionscourse features algorithmic exercises and test bank content in question pools.
Excursions into Combinatorial Geometry
Author: Vladimir Boltyanski
Publisher: Springer Science & Business Media
ISBN: 3642592376
Category : Mathematics
Languages : en
Pages : 428
Book Description
siehe Werbetext.
Publisher: Springer Science & Business Media
ISBN: 3642592376
Category : Mathematics
Languages : en
Pages : 428
Book Description
siehe Werbetext.
Naming Infinity
Author: Loren Graham
Publisher: Harvard University Press
ISBN: 0674032934
Category : History
Languages : en
Pages : 252
Book Description
In 1913, Russian imperial marines stormed an Orthodox monastery at Mt. Athos, Greece, to haul off monks engaged in a dangerously heretical practice known as Name Worshipping. Exiled to remote Russian outposts, the monks and their mystical movement went underground. Ultimately, they came across Russian intellectuals who embraced Name Worshipping—and who would achieve one of the biggest mathematical breakthroughs of the twentieth century, going beyond recent French achievements. Loren Graham and Jean-Michel Kantor take us on an exciting mathematical mystery tour as they unravel a bizarre tale of political struggles, psychological crises, sexual complexities, and ethical dilemmas. At the core of this book is the contest between French and Russian mathematicians who sought new answers to one of the oldest puzzles in math: the nature of infinity. The French school chased rationalist solutions. The Russian mathematicians, notably Dmitri Egorov and Nikolai Luzin—who founded the famous Moscow School of Mathematics—were inspired by mystical insights attained during Name Worshipping. Their religious practice appears to have opened to them visions into the infinite—and led to the founding of descriptive set theory. The men and women of the leading French and Russian mathematical schools are central characters in this absorbing tale that could not be told until now. Naming Infinity is a poignant human interest story that raises provocative questions about science and religion, intuition and creativity.
Publisher: Harvard University Press
ISBN: 0674032934
Category : History
Languages : en
Pages : 252
Book Description
In 1913, Russian imperial marines stormed an Orthodox monastery at Mt. Athos, Greece, to haul off monks engaged in a dangerously heretical practice known as Name Worshipping. Exiled to remote Russian outposts, the monks and their mystical movement went underground. Ultimately, they came across Russian intellectuals who embraced Name Worshipping—and who would achieve one of the biggest mathematical breakthroughs of the twentieth century, going beyond recent French achievements. Loren Graham and Jean-Michel Kantor take us on an exciting mathematical mystery tour as they unravel a bizarre tale of political struggles, psychological crises, sexual complexities, and ethical dilemmas. At the core of this book is the contest between French and Russian mathematicians who sought new answers to one of the oldest puzzles in math: the nature of infinity. The French school chased rationalist solutions. The Russian mathematicians, notably Dmitri Egorov and Nikolai Luzin—who founded the famous Moscow School of Mathematics—were inspired by mystical insights attained during Name Worshipping. Their religious practice appears to have opened to them visions into the infinite—and led to the founding of descriptive set theory. The men and women of the leading French and Russian mathematical schools are central characters in this absorbing tale that could not be told until now. Naming Infinity is a poignant human interest story that raises provocative questions about science and religion, intuition and creativity.
Guide to Competitive Programming
Author: Antti Laaksonen
Publisher: Springer
ISBN: 3319725475
Category : Computers
Languages : en
Pages : 286
Book Description
This invaluable textbook presents a comprehensive introduction to modern competitive programming. The text highlights how competitive programming has proven to be an excellent way to learn algorithms, by encouraging the design of algorithms that actually work, stimulating the improvement of programming and debugging skills, and reinforcing the type of thinking required to solve problems in a competitive setting. The book contains many “folklore” algorithm design tricks that are known by experienced competitive programmers, yet which have previously only been formally discussed in online forums and blog posts. Topics and features: reviews the features of the C++ programming language, and describes how to create efficient algorithms that can quickly process large data sets; discusses sorting algorithms and binary search, and examines a selection of data structures of the C++ standard library; introduces the algorithm design technique of dynamic programming, and investigates elementary graph algorithms; covers such advanced algorithm design topics as bit-parallelism and amortized analysis, and presents a focus on efficiently processing array range queries; surveys specialized algorithms for trees, and discusses the mathematical topics that are relevant in competitive programming; examines advanced graph techniques, geometric algorithms, and string techniques; describes a selection of more advanced topics, including square root algorithms and dynamic programming optimization. This easy-to-follow guide is an ideal reference for all students wishing to learn algorithms, and practice for programming contests. Knowledge of the basics of programming is assumed, but previous background in algorithm design or programming contests is not necessary. Due to the broad range of topics covered at various levels of difficulty, this book is suitable for both beginners and more experienced readers.
Publisher: Springer
ISBN: 3319725475
Category : Computers
Languages : en
Pages : 286
Book Description
This invaluable textbook presents a comprehensive introduction to modern competitive programming. The text highlights how competitive programming has proven to be an excellent way to learn algorithms, by encouraging the design of algorithms that actually work, stimulating the improvement of programming and debugging skills, and reinforcing the type of thinking required to solve problems in a competitive setting. The book contains many “folklore” algorithm design tricks that are known by experienced competitive programmers, yet which have previously only been formally discussed in online forums and blog posts. Topics and features: reviews the features of the C++ programming language, and describes how to create efficient algorithms that can quickly process large data sets; discusses sorting algorithms and binary search, and examines a selection of data structures of the C++ standard library; introduces the algorithm design technique of dynamic programming, and investigates elementary graph algorithms; covers such advanced algorithm design topics as bit-parallelism and amortized analysis, and presents a focus on efficiently processing array range queries; surveys specialized algorithms for trees, and discusses the mathematical topics that are relevant in competitive programming; examines advanced graph techniques, geometric algorithms, and string techniques; describes a selection of more advanced topics, including square root algorithms and dynamic programming optimization. This easy-to-follow guide is an ideal reference for all students wishing to learn algorithms, and practice for programming contests. Knowledge of the basics of programming is assumed, but previous background in algorithm design or programming contests is not necessary. Due to the broad range of topics covered at various levels of difficulty, this book is suitable for both beginners and more experienced readers.
Introduction to Knot Theory
Author: R. H. Crowell
Publisher: Springer Science & Business Media
ISBN: 1461299357
Category : Mathematics
Languages : en
Pages : 191
Book Description
Knot theory is a kind of geometry, and one whose appeal is very direct because the objects studied are perceivable and tangible in everyday physical space. It is a meeting ground of such diverse branches of mathematics as group theory, matrix theory, number theory, algebraic geometry, and differential geometry, to name some of the more prominent ones. It had its origins in the mathematical theory of electricity and in primitive atomic physics, and there are hints today of new applications in certain branches of chemistryJ The outlines of the modern topological theory were worked out by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As a subfield of topology, knot theory forms the core of a wide range of problems dealing with the position of one manifold imbedded within another. This book, which is an elaboration of a series of lectures given by Fox at Haverford College while a Philips Visitor there in the spring of 1956, is an attempt to make the subject accessible to everyone. Primarily it is a text book for a course at the junior-senior level, but we believe that it can be used with profit also by graduate students. Because the algebra required is not the familiar commutative algebra, a disproportionate amount of the book is given over to necessary algebraic preliminaries.
Publisher: Springer Science & Business Media
ISBN: 1461299357
Category : Mathematics
Languages : en
Pages : 191
Book Description
Knot theory is a kind of geometry, and one whose appeal is very direct because the objects studied are perceivable and tangible in everyday physical space. It is a meeting ground of such diverse branches of mathematics as group theory, matrix theory, number theory, algebraic geometry, and differential geometry, to name some of the more prominent ones. It had its origins in the mathematical theory of electricity and in primitive atomic physics, and there are hints today of new applications in certain branches of chemistryJ The outlines of the modern topological theory were worked out by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As a subfield of topology, knot theory forms the core of a wide range of problems dealing with the position of one manifold imbedded within another. This book, which is an elaboration of a series of lectures given by Fox at Haverford College while a Philips Visitor there in the spring of 1956, is an attempt to make the subject accessible to everyone. Primarily it is a text book for a course at the junior-senior level, but we believe that it can be used with profit also by graduate students. Because the algebra required is not the familiar commutative algebra, a disproportionate amount of the book is given over to necessary algebraic preliminaries.