Evaluation of Dynamic Subgrid-scale Models in Large-eddy Simulations of Neutral Turbulent Flow Over a Two-dimensional Rough Sinusoidal Hill

Evaluation of Dynamic Subgrid-scale Models in Large-eddy Simulations of Neutral Turbulent Flow Over a Two-dimensional Rough Sinusoidal Hill PDF Author: Feng Wan
Publisher:
ISBN:
Category :
Languages : en
Pages : 68

Get Book Here

Book Description


Advanced Structural Wind Engineering

Advanced Structural Wind Engineering PDF Author: Yukio Tamura
Publisher: Springer Science & Business Media
ISBN: 4431543376
Category : Science
Languages : en
Pages : 414

Get Book Here

Book Description
This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

Large-eddy Simulation of Turbulent Flow in a Channel with a Surface-mounted Two-dimensional Obstacle Using a Dynamic Subgrid-scale Model

Large-eddy Simulation of Turbulent Flow in a Channel with a Surface-mounted Two-dimensional Obstacle Using a Dynamic Subgrid-scale Model PDF Author: Kyung-Soo Yang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Assessment of Two-equation Linear RANS and Subgrid-scale Large Eddy Simulation Turbulence Models in Multidimensional Simulations

Assessment of Two-equation Linear RANS and Subgrid-scale Large Eddy Simulation Turbulence Models in Multidimensional Simulations PDF Author: Tushar Shethaji
Publisher:
ISBN:
Category :
Languages : en
Pages : 272

Get Book Here

Book Description


New Dynamic Subgrid-scale Modelling Approaches for Large Eddy Simulation and Resolved Statistical Geometry of Wall-bounded Turbulent Shear Flow

New Dynamic Subgrid-scale Modelling Approaches for Large Eddy Simulation and Resolved Statistical Geometry of Wall-bounded Turbulent Shear Flow PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation consists of two parts, i.e. dynamic approaches for subgrid-scale (SGS) stress modelling for large eddy simulation and advanced assessment of the resolved scale motions related to turbulence geometrical statistics and topologies. The numerical simulations are based on turbulent Couette flow. The first part of the dissertation presents four contributions to the development of dynamic SGS models. The conventional integral type dynamic localization SGS model is in the form of a Fredholm integral equation of the second kind. This model is mathematically consistent, but demanding in computational cost. An efficient solution scheme has been developed to solve the integral system for turbulence with homogeneous dimensions. Current approaches to the dynamic two-parameter mixed model (DMM2) are mathematically inconsistent. As a second contribution, the DMM2 has been optimized and a modelling system of two integral equations has been rigorously obtained. The third contribution relates to the development of a novel dynamic localization procedure for the Smagorinsky model using the functional variational method. A sufficient and necessary condition for localization is obtained and a Picard's integral equation for the model coefficient is deduced. Finally, a new dynamic nonlinear SGS stress model (DNM) based on Speziale's quadratic constitutive relation [J. Fluid Mech., 178, p.459, 1987] is proposed. The DNM allows for a nonlinear anisotropic representation of the SGS stress, and exhibits a significant local stability and flexibility in self-calibration. In the second part, the invariant properties of the resolved velocity gradient tensor are studied using recently developed methodologies, i.e. turbulence geometrical statistics and topology. The study is a posteriori based on the proposed DNM, which is different than most of the current a priori approaches based on experimental or DNS databases. The performance of the DNM is further validated in terms of its cap.

Direct and Large-Eddy Simulation I

Direct and Large-Eddy Simulation I PDF Author: Peter R. Voke
Publisher: Springer Science & Business Media
ISBN: 9780792331063
Category : Technology & Engineering
Languages : en
Pages : 454

Get Book Here

Book Description
It is a truism that turbulence is an unsolved problem, whether in scientific, engin eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula tions are necessarily time-dependent and three-dimensional they demand the most advanced computer resources at our disposal. The numerical techniques vary from accurate spectral methods and high-order finite differences to simple finite-volume algorithms derived on the principle of embedding fundamental conservation prop erties in the numerical operations. Genuine direct simulations resolve all the fluid motions fully, and require the highest practical accuracy in their numerical and temporal discretisation. Such simulations have the virtue of great fidelity when carried out carefully, and repre sent a most powerful tool for investigating the processes of transition to turbulence.

Investigation of Dynamic Subgrid-scale and Wall Models for Turbulent Boundary Layers

Investigation of Dynamic Subgrid-scale and Wall Models for Turbulent Boundary Layers PDF Author: Hyun Ji Bae
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Most turbulent flows cannot be calculated by direct numerical simulation (DNS) of the Navier-Stokes equations because the range of scales of motions is so large that the computational cost becomes prohibitive. In large-eddy simulation (LES), only the large eddies are resolved and the effect of the small scales on the larger ones is modeled through a subgrid-scale (SGS) model. Given that accurate representation and prediction of turbulence is needed in many engineering and scientific applications, development of accurate yet computationally efficient SGS models is an important task. Additionally, wall models are necessary to overcome the prohibitive near-wall resolution requirements for the large scales in high-Reynolds-number turbulent flows. This study investigates a new SGS model, the anisotropic minimum-dissipation (AMD) model, which is constructed to provide the minimum eddy viscosity required to avoid energy pile-up in the smallest resolved scales. The AMD model is successfully applied in simulations of decaying grid turbulence for isotropic grids, and temporal mixing layer and turbulent channel flow for anisotropic grids. This model is more cost-effective than the dynamic Smagorinsky model (DSM) and appropriately switches off in laminar and transitional flows. The formulation of the AMD model is extended to the transport equation for scalar concentration to model the subfilter scalar flux. The performance of the model is tested in the simulation of high-Reynolds-number rough-wall boundary-layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the scalar model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. The accuracy of the SGS models is tested by studying the convergence properties in the outer region of a channel flow at moderate to high Reynolds numbers. As LES requires scale separation of the resolved and subgrid scales, the convergence study must be conducted in high-Reynolds-number flows. However, the analysis shows that the errors from the near-wall region are dominant for SGS models in usual LES grid resolutions, where the grid is not refined in the wall-parallel directions. For evaluation of SGS models, in order to overcome the grid requirements imposed by the near-wall turbulent eddies as well as the errors accumulated near the wall, a possible solution is to isolate the outer region of wall-bounded flows. This is made possible by one of two ways: suppressing the near-wall dynamics through a modified wall, or supplying the correct mean stress at the wall with a wall model. Theoretical analysis of the error scaling of SGS models for the mean velocity profile, turbulence intensities, and energy spectra is performed. The numerical convergence studies of the DSM and AMD models show that both models are first-order accurate in terms of the mean velocity profile, which is consistent with the theoretical assessments. Lastly, a new dynamic wall model based on the slip boundary condition is proposed. The use of the slip boundary condition for wall-modeled LES is motivated through theoretical analysis and a priori study of DNS data. The effect of the slip boundary condition on the one-point statistics of the flow is investigated in LES of turbulent channel and flat-plate turbulent boundary layer. The slip boundary condition provides a framework to compensate for the deficit or excess of mean momentum at the wall. The requirements for the slip lengths to be used in conjunction with wall models are discussed, and the equation that connects the slip boundary condition with the stress at the wall is derived. A dynamic procedure based on the invariance of wall stress under test filtering is formulated for the slip condition, providing a dynamic slip wall model free of any a priori specified coefficients. The performance of the proposed dynamic wall model is tested in a series of LES of turbulent channel flow at varying Reynolds numbers, non-equilibrium three-dimensional transient channel flow, and zero-pressure-gradient flat-plate turbulent boundary layer. The results show that the dynamic wall model is able to accurately predict mean and turbulence intensities for various flow configurations, Reynolds numbers, and grid resolutions.

Grid-Independent Large-Eddy Simulation in Turbulent Channel Flow Using Three-Dimensional Explicit Filtering

Grid-Independent Large-Eddy Simulation in Turbulent Channel Flow Using Three-Dimensional Explicit Filtering PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721608942
Category :
Languages : en
Pages : 26

Get Book Here

Book Description
In this paper, turbulence-closure models are evaluated using the 'true' LES approach in turbulent channel flow. The study is an extension of the work presented by Gullbrand (2001), where fourth-order commutative filter functions are applied in three dimensions in a fourth-order finite-difference code. The true LES solution is the grid-independent solution to the filtered governing equations. The solution is obtained by keeping the filter width constant while the computational grid is refined. As the grid is refined, the solution converges towards the true LES solution. The true LES solution will depend on the filter width used, but will be independent of the grid resolution. In traditional LES, because the filter is implicit and directly connected to the grid spacing, the solution converges towards a direct numerical simulation (DNS) as the grid is refined, and not towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-closure models is therefore difficult to determine in traditional LES because, as the grid is refined, more turbulence length scales are resolved and less influence from the models is expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales that are smaller than the filter cutoff, regardless of the grid resolution. This ensures that the resolved length-scales do not vary as the grid resolution is changed. In true LES, the cell size must be smaller than or equal to the cutoff length scale of the filter function. The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM), the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These turbulence models were previously studied using two-dimensional explicit filtering in turbulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991) is used as the USFS model in all the simulations. This enables evaluation of different reconstruction models for the RSFS stresses. The DMM co

A Multifractal Subgrid-scale Model for Large-eddy Simulation of Turbulent Flows

A Multifractal Subgrid-scale Model for Large-eddy Simulation of Turbulent Flows PDF Author: Gregory Charles Burton
Publisher:
ISBN:
Category :
Languages : en
Pages : 568

Get Book Here

Book Description


Quality and Reliability of Large-Eddy Simulations

Quality and Reliability of Large-Eddy Simulations PDF Author: Johan Meyers
Publisher: Springer Science & Business Media
ISBN: 1402085788
Category : Science
Languages : en
Pages : 390

Get Book Here

Book Description
Computational resources have developed to the level that, for the first time, it is becoming possible to apply large-eddy simulation (LES) to turbulent flow problems of realistic complexity. Many examples can be found in technology and in a variety of natural flows. This puts issues related to assessing, assuring, and predicting the quality of LES into the spotlight. Several LES studies have been published in the past, demonstrating a high level of accuracy with which turbulent flow predictions can be attained, without having to resort to the excessive requirements on computational resources imposed by direct numerical simulations. However, the setup and use of turbulent flow simulations requires a profound knowledge of fluid mechanics, numerical techniques, and the application under consideration. The susceptibility of large-eddy simulations to errors in modelling, in numerics, and in the treatment of boundary conditions, can be quite large due to nonlinear accumulation of different contributions over time, leading to an intricate and unpredictable situation. A full understanding of the interacting error dynamics in large-eddy simulations is still lacking. To ensure the reliability of large-eddy simulations for a wide range of industrial users, the development of clear standards for the evaluation, prediction, and control of simulation errors in LES is summoned. The workshop on Quality and Reliability of Large-Eddy Simulations, held October 22-24, 2007 in Leuven, Belgium (QLES2007), provided one of the first platforms specifically addressing these aspects of LES.