Nineteenth Century Short Title Catalogue

Nineteenth Century Short Title Catalogue PDF Author: Avero Publications Limited
Publisher:
ISBN: 9780907977315
Category : Reference
Languages : en
Pages : 632

Get Book Here

Book Description

Nineteenth Century Short Title Catalogue

Nineteenth Century Short Title Catalogue PDF Author: Avero Publications Limited
Publisher:
ISBN: 9780907977315
Category : Reference
Languages : en
Pages : 632

Get Book Here

Book Description


General Catalogue of Printed Books to 1955

General Catalogue of Printed Books to 1955 PDF Author: British Museum. Dept. of Printed Books
Publisher:
ISBN:
Category : English imprints
Languages : en
Pages : 1308

Get Book Here

Book Description


The First Six Books of the Elements of Euclid

The First Six Books of the Elements of Euclid PDF Author: John Casey
Publisher:
ISBN: 9781088465103
Category :
Languages : en
Pages : 212

Get Book Here

Book Description
This edition of the Elements of Euclid, undertaken at the request of the principalsof some of the leading Colleges and Schools of Ireland, is intended tosupply a want much felt by teachers at the present day-the production of awork which, while giving the unrivalled original in all its integrity, would alsocontain the modern conceptions and developments of the portion of Geometryover which the Elements extend. A cursory examination of the work will showthat the Editor has gone much further in this latter direction than any of hispredecessors, for it will be found to contain, not only more actual matter thanis given in any of theirs with which he is acquainted, but also much of a specialcharacter, which is not given, so far as he is aware, in any former work on thesubject. The great extension of geometrical methods in recent times has madesuch a work a necessity for the student, to enable him not only to read with advantage, but even to understand those mathematical writings of modern timeswhich require an accurate knowledge of Elementary Geometry, and to which itis in reality the best introduction

Elementary Geometry from an Advanced Standpoint

Elementary Geometry from an Advanced Standpoint PDF Author: Edwin E. Moise
Publisher: Addison Wesley
ISBN:
Category : Business & Economics
Languages : en
Pages : 520

Get Book Here

Book Description
Students can rely on Moise's clear and thorough presentation of basic geometry theorems. The author assumes that students have no previous knowledge of the subject and presents the basics of geometry from the ground up. This comprehensive approach gives instructors flexibility in teaching. For example, an advanced class may progress rapidly through Chapters 1-7 and devote most of its time to the material presented in Chapters 8, 10, 14, 19, and 20. Similarly, a less advanced class may go carefully through Chapters 1-7, and omit some of the more difficult chapters, such as 20 and 24.

Computational Geometry

Computational Geometry PDF Author: Franco P. Preparata
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413

Get Book Here

Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2

The Athenaeum

The Athenaeum PDF Author:
Publisher:
ISBN:
Category : Arts
Languages : en
Pages : 1226

Get Book Here

Book Description


College Geometry

College Geometry PDF Author: Howard Whitley Eves
Publisher: Jones & Bartlett Learning
ISBN: 9780867204759
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
College Geometry is divided into two parts. Part I is a sequel to basic high school geometry and introduces the reader to some of the important modern extensions of elementary geometry- extension that have largely entered into the mainstream of mathematics. Part II treats notions of geometric structure that arose with the non-Euclidean revolution in the first half of the nineteenth century.

Elementary Geometry for College Students

Elementary Geometry for College Students PDF Author: Daniel C. Alexander
Publisher:
ISBN: 9780395870556
Category : Mathematics
Languages : en
Pages : 566

Get Book Here

Book Description


Advanced Euclidean Geometry

Advanced Euclidean Geometry PDF Author: Roger A. Johnson
Publisher: Courier Corporation
ISBN: 048615498X
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.

How to Prove It

How to Prove It PDF Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 0521861241
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.