Author: Patrick J. Ryan
Publisher: Cambridge University Press
ISBN: 0521127076
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic.
Euclidean and Non-Euclidean Geometry International Student Edition
Author: Patrick J. Ryan
Publisher: Cambridge University Press
ISBN: 0521127076
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic.
Publisher: Cambridge University Press
ISBN: 0521127076
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic.
Transformation Geometry
Author: George E. Martin
Publisher: Springer Science & Business Media
ISBN: 1461256801
Category : Mathematics
Languages : en
Pages : 251
Book Description
Transformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.
Publisher: Springer Science & Business Media
ISBN: 1461256801
Category : Mathematics
Languages : en
Pages : 251
Book Description
Transformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.
Linear Algebra Through Geometry
Author: Thomas Banchoff
Publisher: Springer Science & Business Media
ISBN: 1461243904
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space.
Publisher: Springer Science & Business Media
ISBN: 1461243904
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space.
Geometry
Author: David A. Brannan
Publisher: Cambridge University Press
ISBN: 9780521597876
Category : Mathematics
Languages : en
Pages : 516
Book Description
This is an undergraduate textbook that reveals the intricacies of geometry. The approach used is that a geometry is a space together with a set of transformations of that space (as argued by Klein in his Erlangen programme). The authors explore various geometries: affine, projective, inversive, non-Euclidean and spherical. In each case the key results are explained carefully, and the relationships between the geometries are discussed. This richly illustrated and clearly written text includes full solutions to over 200 problems, and is suitable both for undergraduate courses on geometry and as a resource for self study.
Publisher: Cambridge University Press
ISBN: 9780521597876
Category : Mathematics
Languages : en
Pages : 516
Book Description
This is an undergraduate textbook that reveals the intricacies of geometry. The approach used is that a geometry is a space together with a set of transformations of that space (as argued by Klein in his Erlangen programme). The authors explore various geometries: affine, projective, inversive, non-Euclidean and spherical. In each case the key results are explained carefully, and the relationships between the geometries are discussed. This richly illustrated and clearly written text includes full solutions to over 200 problems, and is suitable both for undergraduate courses on geometry and as a resource for self study.
Euclidean Plane and Its Relatives
Author: Anton Petrunin
Publisher:
ISBN: 9781537649511
Category :
Languages : en
Pages : 192
Book Description
The book grew from my lecture notes. It is designed for a semester-long course in Foundations of Geometry and meant to be rigorous, conservative, elementary and minimalistic.
Publisher:
ISBN: 9781537649511
Category :
Languages : en
Pages : 192
Book Description
The book grew from my lecture notes. It is designed for a semester-long course in Foundations of Geometry and meant to be rigorous, conservative, elementary and minimalistic.
Metric Affine Geometry
Author: Ernst Snapper
Publisher: Elsevier
ISBN: 1483269337
Category : Mathematics
Languages : en
Pages : 456
Book Description
Metric Affine Geometry focuses on linear algebra, which is the source for the axiom systems of all affine and projective geometries, both metric and nonmetric. This book is organized into three chapters. Chapter 1 discusses nonmetric affine geometry, while Chapter 2 reviews inner products of vector spaces. The metric affine geometry is treated in Chapter 3. This text specifically discusses the concrete model for affine space, dilations in terms of coordinates, parallelograms, and theorem of Desargues. The inner products in terms of coordinates and similarities of affine spaces are also elaborated. The prerequisites for this publication are a course in linear algebra and an elementary course in modern algebra that includes the concepts of group, normal subgroup, and quotient group. This monograph is suitable for students and aspiring geometry high school teachers.
Publisher: Elsevier
ISBN: 1483269337
Category : Mathematics
Languages : en
Pages : 456
Book Description
Metric Affine Geometry focuses on linear algebra, which is the source for the axiom systems of all affine and projective geometries, both metric and nonmetric. This book is organized into three chapters. Chapter 1 discusses nonmetric affine geometry, while Chapter 2 reviews inner products of vector spaces. The metric affine geometry is treated in Chapter 3. This text specifically discusses the concrete model for affine space, dilations in terms of coordinates, parallelograms, and theorem of Desargues. The inner products in terms of coordinates and similarities of affine spaces are also elaborated. The prerequisites for this publication are a course in linear algebra and an elementary course in modern algebra that includes the concepts of group, normal subgroup, and quotient group. This monograph is suitable for students and aspiring geometry high school teachers.
Methods for Euclidean Geometry
Author: Owen Byer
Publisher: American Mathematical Soc.
ISBN: 0883857634
Category : Mathematics
Languages : en
Pages : 485
Book Description
Euclidean plane geometry is one of the oldest and most beautiful topics in mathematics. Instead of carefully building geometries from axiom sets, this book uses a wealth of methods to solve problems in Euclidean geometry. Many of these methods arose where existing techniques proved inadequate. In several cases, the new ideas used in solving specific problems later developed into independent areas of mathematics. This book is primarily a geometry textbook, but studying geometry in this way will also develop students' appreciation of the subject and of mathematics as a whole. For instance, despite the fact that the analytic method has been part of mathematics for four centuries, it is rarely a tool a student considers using when faced with a geometry problem. Methods for Euclidean Geometry explores the application of a broad range of mathematical topics to the solution of Euclidean problems.
Publisher: American Mathematical Soc.
ISBN: 0883857634
Category : Mathematics
Languages : en
Pages : 485
Book Description
Euclidean plane geometry is one of the oldest and most beautiful topics in mathematics. Instead of carefully building geometries from axiom sets, this book uses a wealth of methods to solve problems in Euclidean geometry. Many of these methods arose where existing techniques proved inadequate. In several cases, the new ideas used in solving specific problems later developed into independent areas of mathematics. This book is primarily a geometry textbook, but studying geometry in this way will also develop students' appreciation of the subject and of mathematics as a whole. For instance, despite the fact that the analytic method has been part of mathematics for four centuries, it is rarely a tool a student considers using when faced with a geometry problem. Methods for Euclidean Geometry explores the application of a broad range of mathematical topics to the solution of Euclidean problems.
Euclidean and Affine Transformations
Author: P. S. Modenov
Publisher: Academic Press
ISBN: 1483261484
Category : Mathematics
Languages : en
Pages : 171
Book Description
Geometric Transformations, Volume 1: Euclidean and Affine Transformations focuses on the study of coordinates, trigonometry, transformations, and linear equations. The publication first takes a look at orthogonal transformations, including orthogonal transformations of the first and second kinds; representations of orthogonal transformations as the products of fundamental orthogonal transformations; and representation of an orthogonal transformation of space as a product of fundamental orthogonal transformations. The text then examines similarity and affine transformations. Topics include properties of affine mappings, Darboux's lemma and its consequences, affine transformations in coordinates, homothetic transformations, similarity transformations of the plane in coordinates, and similarity mapping. The book takes a look at the representation of a similarity transformation as the product of a homothetic transformation and an orthogonal transformation; application of affine transformations to the investigation of properties of the ellipse; and representation of any affine transformation as a product of affine transformations of the simplest types. The manuscript is a valuable reference for high school teachers and readers interested in the Euclidean and affine transformations.
Publisher: Academic Press
ISBN: 1483261484
Category : Mathematics
Languages : en
Pages : 171
Book Description
Geometric Transformations, Volume 1: Euclidean and Affine Transformations focuses on the study of coordinates, trigonometry, transformations, and linear equations. The publication first takes a look at orthogonal transformations, including orthogonal transformations of the first and second kinds; representations of orthogonal transformations as the products of fundamental orthogonal transformations; and representation of an orthogonal transformation of space as a product of fundamental orthogonal transformations. The text then examines similarity and affine transformations. Topics include properties of affine mappings, Darboux's lemma and its consequences, affine transformations in coordinates, homothetic transformations, similarity transformations of the plane in coordinates, and similarity mapping. The book takes a look at the representation of a similarity transformation as the product of a homothetic transformation and an orthogonal transformation; application of affine transformations to the investigation of properties of the ellipse; and representation of any affine transformation as a product of affine transformations of the simplest types. The manuscript is a valuable reference for high school teachers and readers interested in the Euclidean and affine transformations.
Affine Maps, Euclidean Motions and Quadrics
Author: Agustí Reventós Tarrida
Publisher: Springer Science & Business Media
ISBN: 0857297104
Category : Mathematics
Languages : en
Pages : 420
Book Description
Affine geometry and quadrics are fascinating subjects alone, but they are also important applications of linear algebra. They give a first glimpse into the world of algebraic geometry yet they are equally relevant to a wide range of disciplines such as engineering. This text discusses and classifies affinities and Euclidean motions culminating in classification results for quadrics. A high level of detail and generality is a key feature unmatched by other books available. Such intricacy makes this a particularly accessible teaching resource as it requires no extra time in deconstructing the author’s reasoning. The provision of a large number of exercises with hints will help students to develop their problem solving skills and will also be a useful resource for lecturers when setting work for independent study. Affinities, Euclidean Motions and Quadrics takes rudimentary, and often taken-for-granted, knowledge and presents it in a new, comprehensive form. Standard and non-standard examples are demonstrated throughout and an appendix provides the reader with a summary of advanced linear algebra facts for quick reference to the text. All factors combined, this is a self-contained book ideal for self-study that is not only foundational but unique in its approach.’ This text will be of use to lecturers in linear algebra and its applications to geometry as well as advanced undergraduate and beginning graduate students.
Publisher: Springer Science & Business Media
ISBN: 0857297104
Category : Mathematics
Languages : en
Pages : 420
Book Description
Affine geometry and quadrics are fascinating subjects alone, but they are also important applications of linear algebra. They give a first glimpse into the world of algebraic geometry yet they are equally relevant to a wide range of disciplines such as engineering. This text discusses and classifies affinities and Euclidean motions culminating in classification results for quadrics. A high level of detail and generality is a key feature unmatched by other books available. Such intricacy makes this a particularly accessible teaching resource as it requires no extra time in deconstructing the author’s reasoning. The provision of a large number of exercises with hints will help students to develop their problem solving skills and will also be a useful resource for lecturers when setting work for independent study. Affinities, Euclidean Motions and Quadrics takes rudimentary, and often taken-for-granted, knowledge and presents it in a new, comprehensive form. Standard and non-standard examples are demonstrated throughout and an appendix provides the reader with a summary of advanced linear algebra facts for quick reference to the text. All factors combined, this is a self-contained book ideal for self-study that is not only foundational but unique in its approach.’ This text will be of use to lecturers in linear algebra and its applications to geometry as well as advanced undergraduate and beginning graduate students.
Affine Differential Geometry
Author: Katsumi Nomizu
Publisher: Cambridge University Press
ISBN: 9780521441773
Category : Mathematics
Languages : en
Pages : 286
Book Description
This is a self-contained and systematic account of affine differential geometry from a contemporary viewpoint, not only covering the classical theory, but also introducing the modern developments that have happened over the last decade. In order both to cover as much as possible and to keep the text of a reasonable size, the authors have concentrated on the significant features of the subject and their relationship and application to such areas as Riemannian, Euclidean, Lorentzian and projective differential geometry. In so doing, they also provide a modern introduction to the last. Some of the important geometric surfaces considered are illustrated by computer graphics, making this a physically and mathematically attractive book for all researchers in differential geometry, and for mathematical physicists seeking a quick entry into the subject.
Publisher: Cambridge University Press
ISBN: 9780521441773
Category : Mathematics
Languages : en
Pages : 286
Book Description
This is a self-contained and systematic account of affine differential geometry from a contemporary viewpoint, not only covering the classical theory, but also introducing the modern developments that have happened over the last decade. In order both to cover as much as possible and to keep the text of a reasonable size, the authors have concentrated on the significant features of the subject and their relationship and application to such areas as Riemannian, Euclidean, Lorentzian and projective differential geometry. In so doing, they also provide a modern introduction to the last. Some of the important geometric surfaces considered are illustrated by computer graphics, making this a physically and mathematically attractive book for all researchers in differential geometry, and for mathematical physicists seeking a quick entry into the subject.