Étude mécanistique computationnelle des réactions d'amination catalysées par des dimères de rhodium

Étude mécanistique computationnelle des réactions d'amination catalysées par des dimères de rhodium PDF Author: Emna Azek
Publisher:
ISBN:
Category :
Languages : fr
Pages :

Get Book Here

Book Description
Les réactions d'amination catalytiques sont un outil très efficace en synthèse organique. Elles consistent à introduire un azote sur différents composés organiques, permettant de synthétiser des produits aminés qui peuvent être utilisés pour différentes applications médicales et industrielles. Le groupe de recherche du Pr Lebel a développé des réactions d'amination faisant appel aux dimères de rhodium comme catalyseurs et en utilisant les Nsulfonyloxycarbamates, comme précurseurs de nitrènes métalliques. En effet, en présence d'une base, les N-sulfonyloxycarbamates forment possiblement un intermédiaire de type nitrène de rhodium qui peuvent s'insérer dans un lien C-H, s'additionner sur un lien C=C ou réagir avec un atome de soufre d'un thioéther. On peut ainsi préparer des carbamates cycliques et acycliques, des aziridines et des sulfilimines respectivement. Dans le cas où les réactions d'amination sont catalysées par des dimères de rhodium chiraux, on obtient de bonnes diastéréosélectivités en présence d'un réactif N-sulfonyloxycarbamate chiral. Dans cette dissertation, nous nous sommes intéressés aux aspects mécanistiques de ces réactions d'amination. À défaut de preuves expérimentales solides pour prouver la génération in-situ des espèces nitrènes de rhodium, lesquelles sont les agents d'amination clés, ni de celle du pré-complexe, nitrénoïde de rhodium, des incertitudes subsistaient toujours concernant les mécanismes des différentes réactions d'amination. Notre approche se base sur l'étude des surfaces d'énergies potentielles de différents chemins mécanistiques possibles pour chacune des réactions d'amination, bien établie sur le plan expérimental, en faisant recours à la Théorie des Fonctionnelles de la Densité (DFT). Le groupe de recherche du Pr Ernzerhof est expert dans le développement des fonctionnelles d'échange-corrélation. Pour ce, des critères strictes et pertinents ont été pris en compte lors du choix et de la validation du modèle théorique utilisé dans ces études mécanistiques. La fonctionnelle d'échange corrélation développée par Perdew-Burke- Ernzerhof (PBE) s'est révélé être la meilleure pour décrire ces systèmes réactionnels faisant intervenir les dimères de rhodium dont la corrélation électronique est forte. À l'aide de cette fonctionnelle pure, nous avons étudié la formation et la réactivité des espèces nitrènes de rhodium en fonction de leurs deux états de spin de plus basse énergie. Les nitrènes de rhodium singulet se sont révélés être les intermédiaires les plus réactifs dans l`amination de liens C-H. De plus, les nitrènes de rhodium à l'état singulet sont responsables de la formation des produits secondaires tels que les carbonyles et les carbamates primaires dérivés des Nmésyloxycarbamates correspondants. Dans la réaction d'aziridination, les espèces nitrènes de rhodium à l'état singulet et triplet peuvent toutes les deux agir comme agents d'amination et les processus font intervenir un croisement intersystème de spin. Afin de rationaliser l'induction asymétrique des réactions d'aziridination catalytiques, nous avons entrepris le calcul des ratios de diastéréosélectivités en présence du catalyseur chiral Rh2[(S)-nttl]4. L'étude exhaustive de cette réaction a permis de déterminer que l'induction asymétrique provient d'une conformation réactive de l'espèce nitrène de rhodium de symétrie C4. Aucune étude mécanistique s'appuyant sur la chimie computationnelle n'a été rapportée dans la littérature pour la réaction d'amination de thioéthers et ce peu importe le système catalytique. Afin d'étudier les réactions de sulfimidation catalytiques, nous avons calculé les différents chemins mécanistiques de l'imidation du thioanisole catalysée par un complexe de rhodium avec et sans les additifs DMAP et bis(DMAP)CH2Cl2. L'étude montre que le mécanisme procède via une insertion 'classique' des espèces nitrènes de rhodium dans le thioéther en absence de bis(DMAP)CH2Cl2. En présence de ce dernier, le mécanisme diverge vers une réaction d'insertion du thioéther/élimination d'un sel (bis(DMAP)CH2Cl-OMs) où le complexe nitrénoïde de rhodium devient, désormais, l'agent d'imidation.

Étude mécanistique computationnelle des réactions d'amination catalysées par des dimères de rhodium

Étude mécanistique computationnelle des réactions d'amination catalysées par des dimères de rhodium PDF Author: Emna Azek
Publisher:
ISBN:
Category :
Languages : fr
Pages :

Get Book Here

Book Description
Les réactions d'amination catalytiques sont un outil très efficace en synthèse organique. Elles consistent à introduire un azote sur différents composés organiques, permettant de synthétiser des produits aminés qui peuvent être utilisés pour différentes applications médicales et industrielles. Le groupe de recherche du Pr Lebel a développé des réactions d'amination faisant appel aux dimères de rhodium comme catalyseurs et en utilisant les Nsulfonyloxycarbamates, comme précurseurs de nitrènes métalliques. En effet, en présence d'une base, les N-sulfonyloxycarbamates forment possiblement un intermédiaire de type nitrène de rhodium qui peuvent s'insérer dans un lien C-H, s'additionner sur un lien C=C ou réagir avec un atome de soufre d'un thioéther. On peut ainsi préparer des carbamates cycliques et acycliques, des aziridines et des sulfilimines respectivement. Dans le cas où les réactions d'amination sont catalysées par des dimères de rhodium chiraux, on obtient de bonnes diastéréosélectivités en présence d'un réactif N-sulfonyloxycarbamate chiral. Dans cette dissertation, nous nous sommes intéressés aux aspects mécanistiques de ces réactions d'amination. À défaut de preuves expérimentales solides pour prouver la génération in-situ des espèces nitrènes de rhodium, lesquelles sont les agents d'amination clés, ni de celle du pré-complexe, nitrénoïde de rhodium, des incertitudes subsistaient toujours concernant les mécanismes des différentes réactions d'amination. Notre approche se base sur l'étude des surfaces d'énergies potentielles de différents chemins mécanistiques possibles pour chacune des réactions d'amination, bien établie sur le plan expérimental, en faisant recours à la Théorie des Fonctionnelles de la Densité (DFT). Le groupe de recherche du Pr Ernzerhof est expert dans le développement des fonctionnelles d'échange-corrélation. Pour ce, des critères strictes et pertinents ont été pris en compte lors du choix et de la validation du modèle théorique utilisé dans ces études mécanistiques. La fonctionnelle d'échange corrélation développée par Perdew-Burke- Ernzerhof (PBE) s'est révélé être la meilleure pour décrire ces systèmes réactionnels faisant intervenir les dimères de rhodium dont la corrélation électronique est forte. À l'aide de cette fonctionnelle pure, nous avons étudié la formation et la réactivité des espèces nitrènes de rhodium en fonction de leurs deux états de spin de plus basse énergie. Les nitrènes de rhodium singulet se sont révélés être les intermédiaires les plus réactifs dans l`amination de liens C-H. De plus, les nitrènes de rhodium à l'état singulet sont responsables de la formation des produits secondaires tels que les carbonyles et les carbamates primaires dérivés des Nmésyloxycarbamates correspondants. Dans la réaction d'aziridination, les espèces nitrènes de rhodium à l'état singulet et triplet peuvent toutes les deux agir comme agents d'amination et les processus font intervenir un croisement intersystème de spin. Afin de rationaliser l'induction asymétrique des réactions d'aziridination catalytiques, nous avons entrepris le calcul des ratios de diastéréosélectivités en présence du catalyseur chiral Rh2[(S)-nttl]4. L'étude exhaustive de cette réaction a permis de déterminer que l'induction asymétrique provient d'une conformation réactive de l'espèce nitrène de rhodium de symétrie C4. Aucune étude mécanistique s'appuyant sur la chimie computationnelle n'a été rapportée dans la littérature pour la réaction d'amination de thioéthers et ce peu importe le système catalytique. Afin d'étudier les réactions de sulfimidation catalytiques, nous avons calculé les différents chemins mécanistiques de l'imidation du thioanisole catalysée par un complexe de rhodium avec et sans les additifs DMAP et bis(DMAP)CH2Cl2. L'étude montre que le mécanisme procède via une insertion 'classique' des espèces nitrènes de rhodium dans le thioéther en absence de bis(DMAP)CH2Cl2. En présence de ce dernier, le mécanisme diverge vers une réaction d'insertion du thioéther/élimination d'un sel (bis(DMAP)CH2Cl-OMs) où le complexe nitrénoïde de rhodium devient, désormais, l'agent d'imidation.