Author: Rochelle Tractenberg
Publisher: Ethics International Press
ISBN: 1804410772
Category : Language Arts & Disciplines
Languages : en
Pages : 685
Book Description
Ethical Practice of Statistics and Data Science is intended to prepare people to fully assume their responsibilities to practice statistics and data science ethically. Aimed at early career professionals, practitioners, and mentors or supervisors of practitioners, the book supports the ethical practice of statistics and data science, with an emphasis on how to earn the designation of, and recognize, “the ethical practitioner”. The book features 47 case studies, each mapped to the Data Science Ethics Checklist (DSEC); Data Ethics Framework (DEFW); the American Statistical Association (ASA) Ethical Guidelines for Statistical Practice; and the Association of Computing Machinery (ACM) Code of Ethics. It is necessary reading for students enrolled in any data intensive program, including undergraduate or graduate degrees in (bio-)statistics, business/analytics, or data science. Managers, leaders, supervisors, and mentors who lead data-intensive teams in government, industry, or academia would also benefit greatly from this book. This is a companion volume to Ethical Reasoning For A Data-Centered World, also published by Ethics International Press (2022). These are the first and only books to be based on, and to provide guidance to, the ASA and ACM Ethical Guidelines/Code of Ethics.
Ethical Practice of Statistics and Data Science
Author: Rochelle Tractenberg
Publisher: Ethics International Press
ISBN: 1804410772
Category : Language Arts & Disciplines
Languages : en
Pages : 685
Book Description
Ethical Practice of Statistics and Data Science is intended to prepare people to fully assume their responsibilities to practice statistics and data science ethically. Aimed at early career professionals, practitioners, and mentors or supervisors of practitioners, the book supports the ethical practice of statistics and data science, with an emphasis on how to earn the designation of, and recognize, “the ethical practitioner”. The book features 47 case studies, each mapped to the Data Science Ethics Checklist (DSEC); Data Ethics Framework (DEFW); the American Statistical Association (ASA) Ethical Guidelines for Statistical Practice; and the Association of Computing Machinery (ACM) Code of Ethics. It is necessary reading for students enrolled in any data intensive program, including undergraduate or graduate degrees in (bio-)statistics, business/analytics, or data science. Managers, leaders, supervisors, and mentors who lead data-intensive teams in government, industry, or academia would also benefit greatly from this book. This is a companion volume to Ethical Reasoning For A Data-Centered World, also published by Ethics International Press (2022). These are the first and only books to be based on, and to provide guidance to, the ASA and ACM Ethical Guidelines/Code of Ethics.
Publisher: Ethics International Press
ISBN: 1804410772
Category : Language Arts & Disciplines
Languages : en
Pages : 685
Book Description
Ethical Practice of Statistics and Data Science is intended to prepare people to fully assume their responsibilities to practice statistics and data science ethically. Aimed at early career professionals, practitioners, and mentors or supervisors of practitioners, the book supports the ethical practice of statistics and data science, with an emphasis on how to earn the designation of, and recognize, “the ethical practitioner”. The book features 47 case studies, each mapped to the Data Science Ethics Checklist (DSEC); Data Ethics Framework (DEFW); the American Statistical Association (ASA) Ethical Guidelines for Statistical Practice; and the Association of Computing Machinery (ACM) Code of Ethics. It is necessary reading for students enrolled in any data intensive program, including undergraduate or graduate degrees in (bio-)statistics, business/analytics, or data science. Managers, leaders, supervisors, and mentors who lead data-intensive teams in government, industry, or academia would also benefit greatly from this book. This is a companion volume to Ethical Reasoning For A Data-Centered World, also published by Ethics International Press (2022). These are the first and only books to be based on, and to provide guidance to, the ASA and ACM Ethical Guidelines/Code of Ethics.
Ethics and Data Science
Author: Mike Loukides
Publisher: "O'Reilly Media, Inc."
ISBN: 1492078212
Category : Computers
Languages : en
Pages : 37
Book Description
As the impact of data science continues to grow on society there is an increased need to discuss how data is appropriately used and how to address misuse. Yet, ethical principles for working with data have been available for decades. The real issue today is how to put those principles into action. With this report, authors Mike Loukides, Hilary Mason, and DJ Patil examine practical ways for making ethical data standards part of your work every day. To help you consider all of possible ramifications of your work on data projects, this report includes: A sample checklist that you can adapt for your own procedures Five framing guidelines (the Five C’s) for building data products: consent, clarity, consistency, control, and consequences Suggestions for building ethics into your data-driven culture Now is the time to invest in a deliberate practice of data ethics, for better products, better teams, and better outcomes. Get a copy of this report and learn what it takes to do good data science today.
Publisher: "O'Reilly Media, Inc."
ISBN: 1492078212
Category : Computers
Languages : en
Pages : 37
Book Description
As the impact of data science continues to grow on society there is an increased need to discuss how data is appropriately used and how to address misuse. Yet, ethical principles for working with data have been available for decades. The real issue today is how to put those principles into action. With this report, authors Mike Loukides, Hilary Mason, and DJ Patil examine practical ways for making ethical data standards part of your work every day. To help you consider all of possible ramifications of your work on data projects, this report includes: A sample checklist that you can adapt for your own procedures Five framing guidelines (the Five C’s) for building data products: consent, clarity, consistency, control, and consequences Suggestions for building ethics into your data-driven culture Now is the time to invest in a deliberate practice of data ethics, for better products, better teams, and better outcomes. Get a copy of this report and learn what it takes to do good data science today.
Big Data and Social Science
Author: Ian Foster
Publisher: CRC Press
ISBN: 100020863X
Category : Mathematics
Languages : en
Pages : 341
Book Description
Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations. Features: Takes an accessible, hands-on approach to handling new types of data in the social sciences Presents the key data science tools in a non-intimidating way to both social and data scientists while keeping the focus on research questions and purposes Illustrates social science and data science principles through real-world problems Links computer science concepts to practical social science research Promotes good scientific practice Provides freely available workbooks with data, code, and practical programming exercises, through Binder and GitHub New to the Second Edition: Increased use of examples from different areas of social sciences New chapter on dealing with Bias and Fairness in Machine Learning models Expanded chapters focusing on Machine Learning and Text Analysis Revamped hands-on Jupyter notebooks to reinforce concepts covered in each chapter This classroom-tested book fills a major gap in graduate- and professional-level data science and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of applied social scientists and public policy practitioners. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.
Publisher: CRC Press
ISBN: 100020863X
Category : Mathematics
Languages : en
Pages : 341
Book Description
Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations. Features: Takes an accessible, hands-on approach to handling new types of data in the social sciences Presents the key data science tools in a non-intimidating way to both social and data scientists while keeping the focus on research questions and purposes Illustrates social science and data science principles through real-world problems Links computer science concepts to practical social science research Promotes good scientific practice Provides freely available workbooks with data, code, and practical programming exercises, through Binder and GitHub New to the Second Edition: Increased use of examples from different areas of social sciences New chapter on dealing with Bias and Fairness in Machine Learning models Expanded chapters focusing on Machine Learning and Text Analysis Revamped hands-on Jupyter notebooks to reinforce concepts covered in each chapter This classroom-tested book fills a major gap in graduate- and professional-level data science and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of applied social scientists and public policy practitioners. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.
Ethical Reasoning for a Data-Centered World
Author: Rochelle Tractenberg
Publisher: Ethics International Press
ISBN: 1804410799
Category : Language Arts & Disciplines
Languages : en
Pages : 411
Book Description
The American Statistical Association (ASA) and the Association of Computing Machinery (ACM) have longstanding ethical practice standards that are explicitly intended to be utilized by all who use statistical practices or computing, or both. Since statistics and computing are critical in any data-centered activity, these practice standards are essential to instruction in the uses of statistical practices or computing across disciplines. Ethical Reasoning For A Data-Centered World is aimed at any undergraduate or graduate students utilizing data. Whether the career goal is research, teaching, business, government, or a combination, this book presents a method for understanding and prioritizing ethical statistics, computing, and data science – featuring the ASA and ACM practice standards. To facilitate engagement, integration with prior learning, and authenticity, the material is organized around seven tasks: Planning/Designing; Data collection; Analysis; Interpretation; Reporting; Documenting; and Engaging in team work. This book is a companion volume to Ethical Practice of Statistics and Data Science, also published by Ethics International Press (2022). These are the first and only books to be based on, and to provide guidance to, the American Statistical Association (ASA) and Association of Computing Machinery (ACM) ethical guideline documents.
Publisher: Ethics International Press
ISBN: 1804410799
Category : Language Arts & Disciplines
Languages : en
Pages : 411
Book Description
The American Statistical Association (ASA) and the Association of Computing Machinery (ACM) have longstanding ethical practice standards that are explicitly intended to be utilized by all who use statistical practices or computing, or both. Since statistics and computing are critical in any data-centered activity, these practice standards are essential to instruction in the uses of statistical practices or computing across disciplines. Ethical Reasoning For A Data-Centered World is aimed at any undergraduate or graduate students utilizing data. Whether the career goal is research, teaching, business, government, or a combination, this book presents a method for understanding and prioritizing ethical statistics, computing, and data science – featuring the ASA and ACM practice standards. To facilitate engagement, integration with prior learning, and authenticity, the material is organized around seven tasks: Planning/Designing; Data collection; Analysis; Interpretation; Reporting; Documenting; and Engaging in team work. This book is a companion volume to Ethical Practice of Statistics and Data Science, also published by Ethics International Press (2022). These are the first and only books to be based on, and to provide guidance to, the American Statistical Association (ASA) and Association of Computing Machinery (ACM) ethical guideline documents.
Data Science in Education Using R
Author: Ryan A. Estrellado
Publisher: Routledge
ISBN: 1000200728
Category : Education
Languages : en
Pages : 305
Book Description
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
Publisher: Routledge
ISBN: 1000200728
Category : Education
Languages : en
Pages : 305
Book Description
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
Ethics in Statistics
Author: Hassan Doosti
Publisher: Ethics International Press
ISBN: 1871891663
Category : Reference
Languages : en
Pages : 598
Book Description
Data plays a vital role in different parts of our lives. In the world of big data, and policy determined by a variety of statistical artifacts, discussions around the ethics of data gathering, manipulation and presentation are increasingly important. Ethics in Statistics aims to make a significant contribution to that debate. The processes of gathering data through sampling, summarising of the findings, and extending results to a population, need to be checked via an ethical prospective, as well as a statistical one. Statistical learning without ethics can be harmful for mankind. This edited collection brings together contributors in the field of data science, data analytics and statistics, to share their thoughts about the role of ethics in different aspects of statistical learning.
Publisher: Ethics International Press
ISBN: 1871891663
Category : Reference
Languages : en
Pages : 598
Book Description
Data plays a vital role in different parts of our lives. In the world of big data, and policy determined by a variety of statistical artifacts, discussions around the ethics of data gathering, manipulation and presentation are increasingly important. Ethics in Statistics aims to make a significant contribution to that debate. The processes of gathering data through sampling, summarising of the findings, and extending results to a population, need to be checked via an ethical prospective, as well as a statistical one. Statistical learning without ethics can be harmful for mankind. This edited collection brings together contributors in the field of data science, data analytics and statistics, to share their thoughts about the role of ethics in different aspects of statistical learning.
97 Things About Ethics Everyone in Data Science Should Know
Author: Bill Franks
Publisher: "O'Reilly Media, Inc."
ISBN: 1492072613
Category : Computers
Languages : en
Pages : 308
Book Description
Most of the high-profile cases of real or perceived unethical activity in data science arenâ??t matters of bad intent. Rather, they occur because the ethics simply arenâ??t thought through well enough. Being ethical takes constant diligence, and in many situations identifying the right choice can be difficult. In this in-depth book, contributors from top companies in technology, finance, and other industries share experiences and lessons learned from collecting, managing, and analyzing data ethically. Data science professionals, managers, and tech leaders will gain a better understanding of ethics through powerful, real-world best practices. Articles include: Ethics Is Not a Binary Conceptâ??Tim Wilson How to Approach Ethical Transparencyâ??Rado Kotorov Unbiased ≠ Fairâ??Doug Hague Rules and Rationalityâ??Christof Wolf Brenner The Truth About AI Biasâ??Cassie Kozyrkov Cautionary Ethics Talesâ??Sherrill Hayes Fairness in the Age of Algorithmsâ??Anna Jacobson The Ethical Data Storytellerâ??Brent Dykes Introducing Ethicizeâ?¢, the Fully AI-Driven Cloud-Based Ethics Solution!â??Brian Oâ??Neill Be Careful with "Decisions of the Heart"â??Hugh Watson Understanding Passive Versus Proactive Ethicsâ??Bill Schmarzo
Publisher: "O'Reilly Media, Inc."
ISBN: 1492072613
Category : Computers
Languages : en
Pages : 308
Book Description
Most of the high-profile cases of real or perceived unethical activity in data science arenâ??t matters of bad intent. Rather, they occur because the ethics simply arenâ??t thought through well enough. Being ethical takes constant diligence, and in many situations identifying the right choice can be difficult. In this in-depth book, contributors from top companies in technology, finance, and other industries share experiences and lessons learned from collecting, managing, and analyzing data ethically. Data science professionals, managers, and tech leaders will gain a better understanding of ethics through powerful, real-world best practices. Articles include: Ethics Is Not a Binary Conceptâ??Tim Wilson How to Approach Ethical Transparencyâ??Rado Kotorov Unbiased ≠ Fairâ??Doug Hague Rules and Rationalityâ??Christof Wolf Brenner The Truth About AI Biasâ??Cassie Kozyrkov Cautionary Ethics Talesâ??Sherrill Hayes Fairness in the Age of Algorithmsâ??Anna Jacobson The Ethical Data Storytellerâ??Brent Dykes Introducing Ethicizeâ?¢, the Fully AI-Driven Cloud-Based Ethics Solution!â??Brian Oâ??Neill Be Careful with "Decisions of the Heart"â??Hugh Watson Understanding Passive Versus Proactive Ethicsâ??Bill Schmarzo
Data Science in Theory and Practice
Author: Maria Cristina Mariani
Publisher: John Wiley & Sons
ISBN: 1119674689
Category : Mathematics
Languages : en
Pages : 404
Book Description
DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.
Publisher: John Wiley & Sons
ISBN: 1119674689
Category : Mathematics
Languages : en
Pages : 404
Book Description
DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.
Applied Data Science
Author: Douglas G. Woolford
Publisher: Springer Nature
ISBN: 303129937X
Category : Computers
Languages : en
Pages : 195
Book Description
The use of data to guide action is growing. Even the public uses data to guide everyday decisions! How do we develop data acumen across a broad range of fields and varying levels of expertise? How do we foster the development of effective data translators? This book explores these questions, presenting an interdisciplinary collection of edited contributions across fields such as education, health sciences, natural sciences, politics, economics, business and management studies, social sciences, and humanities. Authors illustrate how to use data within a discipline, including visualization and analysis, translating and communicating results, and pedagogical considerations. This book is of interest to scholars and anyone looking to understand the use of data science across disciplines. It is ideal in a course for non-data science majors exploring how data translation occurs in various contexts and for professionals looking to engage in roles requiring data translation.
Publisher: Springer Nature
ISBN: 303129937X
Category : Computers
Languages : en
Pages : 195
Book Description
The use of data to guide action is growing. Even the public uses data to guide everyday decisions! How do we develop data acumen across a broad range of fields and varying levels of expertise? How do we foster the development of effective data translators? This book explores these questions, presenting an interdisciplinary collection of edited contributions across fields such as education, health sciences, natural sciences, politics, economics, business and management studies, social sciences, and humanities. Authors illustrate how to use data within a discipline, including visualization and analysis, translating and communicating results, and pedagogical considerations. This book is of interest to scholars and anyone looking to understand the use of data science across disciplines. It is ideal in a course for non-data science majors exploring how data translation occurs in various contexts and for professionals looking to engage in roles requiring data translation.
Big Data and Social Science
Author: Ian Foster
Publisher: CRC Press
ISBN: 1498751431
Category : Mathematics
Languages : en
Pages : 493
Book Description
Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.
Publisher: CRC Press
ISBN: 1498751431
Category : Mathematics
Languages : en
Pages : 493
Book Description
Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.