Author: Lang Wu
Publisher: CRC Press
ISBN: 9781420074086
Category : Mathematics
Languages : en
Pages : 431
Book Description
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Mixed Effects Models for Complex Data
Author: Lang Wu
Publisher: CRC Press
ISBN: 9781420074086
Category : Mathematics
Languages : en
Pages : 431
Book Description
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Publisher: CRC Press
ISBN: 9781420074086
Category : Mathematics
Languages : en
Pages : 431
Book Description
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Nonparametric Regression Methods for Longitudinal Data Analysis
Author: Hulin Wu
Publisher: John Wiley & Sons
ISBN: 0470009667
Category : Mathematics
Languages : en
Pages : 401
Book Description
Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.
Publisher: John Wiley & Sons
ISBN: 0470009667
Category : Mathematics
Languages : en
Pages : 401
Book Description
Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.
Advanced Medical Statistics (2nd Edition)
Author: Ying Lu
Publisher: World Scientific
ISBN: 9814583324
Category : Medical
Languages : en
Pages : 1471
Book Description
The book aims to provide both comprehensive reviews of the classical methods and an introduction to new developments in medical statistics. The topics range from meta analysis, clinical trial design, causal inference, personalized medicine to machine learning and next generation sequence analysis. Since the publication of the first edition, there have been tremendous advances in biostatistics and bioinformatics. The new edition tries to cover as many important emerging areas and reflect as much progress as possible. Many distinguished scholars, who greatly advanced their research areas in statistical methodology as well as practical applications, also have revised several chapters with relevant updates and written new ones from scratch.The new edition has been divided into four sections, including, Statistical Methods in Medicine and Epidemiology, Statistical Methods in Clinical Trials, Statistical Genetics, and General Methods. To reflect the rise of modern statistical genetics as one of the most fertile research areas since the publication of the first edition, the brand new section on Statistical Genetics includes entirely new chapters reflecting the state of the art in the field.Although tightly related, all the book chapters are self-contained and can be read independently. The book chapters intend to provide a convenient launch pad for readers interested in learning a specific topic, applying the related statistical methods in their scientific research and seeking the newest references for in-depth research.
Publisher: World Scientific
ISBN: 9814583324
Category : Medical
Languages : en
Pages : 1471
Book Description
The book aims to provide both comprehensive reviews of the classical methods and an introduction to new developments in medical statistics. The topics range from meta analysis, clinical trial design, causal inference, personalized medicine to machine learning and next generation sequence analysis. Since the publication of the first edition, there have been tremendous advances in biostatistics and bioinformatics. The new edition tries to cover as many important emerging areas and reflect as much progress as possible. Many distinguished scholars, who greatly advanced their research areas in statistical methodology as well as practical applications, also have revised several chapters with relevant updates and written new ones from scratch.The new edition has been divided into four sections, including, Statistical Methods in Medicine and Epidemiology, Statistical Methods in Clinical Trials, Statistical Genetics, and General Methods. To reflect the rise of modern statistical genetics as one of the most fertile research areas since the publication of the first edition, the brand new section on Statistical Genetics includes entirely new chapters reflecting the state of the art in the field.Although tightly related, all the book chapters are self-contained and can be read independently. The book chapters intend to provide a convenient launch pad for readers interested in learning a specific topic, applying the related statistical methods in their scientific research and seeking the newest references for in-depth research.
Complex Models and Computational Methods in Statistics
Author: Matteo Grigoletto
Publisher: Springer Science & Business Media
ISBN: 884702871X
Category : Mathematics
Languages : en
Pages : 228
Book Description
The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.
Publisher: Springer Science & Business Media
ISBN: 884702871X
Category : Mathematics
Languages : en
Pages : 228
Book Description
The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.
Nonlinear Models for Repeated Measurement Data
Author: Marie Davidian
Publisher: Routledge
ISBN: 1351428152
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Publisher: Routledge
ISBN: 1351428152
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Nonlinear Models for Repeated Measurement Data
Author: Marie Davidian
Publisher: Routledge
ISBN: 1351428144
Category : Mathematics
Languages : en
Pages : 380
Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Publisher: Routledge
ISBN: 1351428144
Category : Mathematics
Languages : en
Pages : 380
Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Linear and Nonlinear Models for the Analysis of Repeated Measurements
Author: Edward Vonesh
Publisher: CRC Press
ISBN: 9780824782481
Category : Mathematics
Languages : en
Pages : 590
Book Description
Integrates the latest theory, methodology and applications related to the design and analysis of repeated measurement. The text covers a broad range of topics, including the analysis of repeated measures design, general crossover designs, and linear and nonlinear regression models. It also contains a 3.5 IBM compatible disk, with software to implement immediately the techniques.
Publisher: CRC Press
ISBN: 9780824782481
Category : Mathematics
Languages : en
Pages : 590
Book Description
Integrates the latest theory, methodology and applications related to the design and analysis of repeated measurement. The text covers a broad range of topics, including the analysis of repeated measures design, general crossover designs, and linear and nonlinear regression models. It also contains a 3.5 IBM compatible disk, with software to implement immediately the techniques.
Nonparametric Regression Analysis of Longitudinal Data
Author: Hans-Georg Müller
Publisher: Springer Science & Business Media
ISBN: 1461239265
Category : Mathematics
Languages : en
Pages : 208
Book Description
This monograph reviews some of the work that has been done for longitudi nal data in the rapidly expanding field of nonparametric regression. The aim is to give the reader an impression of the basic mathematical tools that have been applied, and also to provide intuition about the methods and applications. Applications to the analysis of longitudinal studies are emphasized to encourage the non-specialist and applied statistician to try these methods out. To facilitate this, FORTRAN programs are provided which carry out some of the procedures described in the text. The emphasis of most research work so far has been on the theoretical aspects of nonparametric regression. It is my hope that these techniques will gain a firm place in the repertoire of applied statisticians who realize the large potential for convincing applications and the need to use these techniques concurrently with parametric regression. This text evolved during a set of lectures given by the author at the Division of Statistics at the University of California, Davis in Fall 1986 and is based on the author's Habilitationsschrift submitted to the University of Marburg in Spring 1985 as well as on published and unpublished work. Completeness is not attempted, neither in the text nor in the references. The following persons have been particularly generous in sharing research or giving advice: Th. Gasser, P. Ihm, Y. P. Mack, V. Mammi tzsch, G . G. Roussas, U. Stadtmuller, W. Stute and R.
Publisher: Springer Science & Business Media
ISBN: 1461239265
Category : Mathematics
Languages : en
Pages : 208
Book Description
This monograph reviews some of the work that has been done for longitudi nal data in the rapidly expanding field of nonparametric regression. The aim is to give the reader an impression of the basic mathematical tools that have been applied, and also to provide intuition about the methods and applications. Applications to the analysis of longitudinal studies are emphasized to encourage the non-specialist and applied statistician to try these methods out. To facilitate this, FORTRAN programs are provided which carry out some of the procedures described in the text. The emphasis of most research work so far has been on the theoretical aspects of nonparametric regression. It is my hope that these techniques will gain a firm place in the repertoire of applied statisticians who realize the large potential for convincing applications and the need to use these techniques concurrently with parametric regression. This text evolved during a set of lectures given by the author at the Division of Statistics at the University of California, Davis in Fall 1986 and is based on the author's Habilitationsschrift submitted to the University of Marburg in Spring 1985 as well as on published and unpublished work. Completeness is not attempted, neither in the text nor in the references. The following persons have been particularly generous in sharing research or giving advice: Th. Gasser, P. Ihm, Y. P. Mack, V. Mammi tzsch, G . G. Roussas, U. Stadtmuller, W. Stute and R.
Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis
Author: Marcos Briano
Publisher: Springer Science & Business Media
ISBN: 1402078048
Category : Medical
Languages : en
Pages : 311
Book Description
Advanced Methods of Pharmacokinetic and Pharmocodynamic Systems Analysis Volume 3 is vital to professionals and academicians working in drug development and bioengineering. Both basic and clinical scientists will benefit from this work. This book contains chapters by leading researchers in pharmacokinetic/pharmacodynamic modeling and will be of interest to anyone involved with the application of pharmacokinetic and pharmacodynamics to drug development. The use of mathematical modeling and associated computational methods is central to the study of the absorption, distribution and elimination of therapeutic drugs (pharmacokinetics) and to understanding how drugs produce their effects (pharmacodynamics). From its inception, the field of pharmacokinetics and pharmacodynamics has incorporated methods of mathematical modeling, simulation and computation in an effort to better understand and quantify the processes of uptake, disposition and action of therapeutic drugs. These methods for pharmacokinetic/pharmacodynamic systems analysis impact all aspects of drug development. In vitro, animal and human testing, as well as drug therapy are all influenced by these methods. Modeling methodologies developed for studying pharmacokinetic/ pharmacodynamic processes confront many challenges. This is related in part to the severe restrictions on the number and type of measurements that are available from laboratory experiments and clinical trials, as well as the variability in the experiments and the uncertainty associated with the processes themselves. The contributions are organized in three main areas: Mechanism-Based PK/PD, Pharmacometrics and Pharmacotherapy. Both professionals and academics will profit from this extensive work.
Publisher: Springer Science & Business Media
ISBN: 1402078048
Category : Medical
Languages : en
Pages : 311
Book Description
Advanced Methods of Pharmacokinetic and Pharmocodynamic Systems Analysis Volume 3 is vital to professionals and academicians working in drug development and bioengineering. Both basic and clinical scientists will benefit from this work. This book contains chapters by leading researchers in pharmacokinetic/pharmacodynamic modeling and will be of interest to anyone involved with the application of pharmacokinetic and pharmacodynamics to drug development. The use of mathematical modeling and associated computational methods is central to the study of the absorption, distribution and elimination of therapeutic drugs (pharmacokinetics) and to understanding how drugs produce their effects (pharmacodynamics). From its inception, the field of pharmacokinetics and pharmacodynamics has incorporated methods of mathematical modeling, simulation and computation in an effort to better understand and quantify the processes of uptake, disposition and action of therapeutic drugs. These methods for pharmacokinetic/pharmacodynamic systems analysis impact all aspects of drug development. In vitro, animal and human testing, as well as drug therapy are all influenced by these methods. Modeling methodologies developed for studying pharmacokinetic/ pharmacodynamic processes confront many challenges. This is related in part to the severe restrictions on the number and type of measurements that are available from laboratory experiments and clinical trials, as well as the variability in the experiments and the uncertainty associated with the processes themselves. The contributions are organized in three main areas: Mechanism-Based PK/PD, Pharmacometrics and Pharmacotherapy. Both professionals and academics will profit from this extensive work.
Symmetric Multivariate and Related Distributions
Author: Kai Wang Fang
Publisher: CRC Press
ISBN: 1351093940
Category : Mathematics
Languages : en
Pages : 165
Book Description
Since the publication of the by now classical Johnson and Kotz Continuous Multivariate Distributions (Wiley, 1972) there have been substantial developments in multivariate distribution theory especially in the area of non-normal symmetric multivariate distributions. The book by Fang, Kotz and Ng summarizes these developments in a manner which is accessible to a reader with only limited background (advanced real-analysis calculus, linear algebra and elementary matrix calculus). Many of the results in this field are due to Kai-Tai Fang and his associates and appeared in Chinese publications only. A thorough literature search was conducted and the book represents the latest work - as of 1988 - in this rapidly developing field of multivariate distributions. The authors are experts in statistical distribution theory.
Publisher: CRC Press
ISBN: 1351093940
Category : Mathematics
Languages : en
Pages : 165
Book Description
Since the publication of the by now classical Johnson and Kotz Continuous Multivariate Distributions (Wiley, 1972) there have been substantial developments in multivariate distribution theory especially in the area of non-normal symmetric multivariate distributions. The book by Fang, Kotz and Ng summarizes these developments in a manner which is accessible to a reader with only limited background (advanced real-analysis calculus, linear algebra and elementary matrix calculus). Many of the results in this field are due to Kai-Tai Fang and his associates and appeared in Chinese publications only. A thorough literature search was conducted and the book represents the latest work - as of 1988 - in this rapidly developing field of multivariate distributions. The authors are experts in statistical distribution theory.