Estimating the Effects of Global Climate Change on Streamflow and Wetlands in the Watershed of the Pere Marquette River, Michigan

Estimating the Effects of Global Climate Change on Streamflow and Wetlands in the Watershed of the Pere Marquette River, Michigan PDF Author: Avram G. B. Primack
Publisher:
ISBN:
Category :
Languages : en
Pages : 358

Get Book Here

Book Description

Estimating the Effects of Global Climate Change on Streamflow and Wetlands in the Watershed of the Pere Marquette River, Michigan

Estimating the Effects of Global Climate Change on Streamflow and Wetlands in the Watershed of the Pere Marquette River, Michigan PDF Author: Avram G. B. Primack
Publisher:
ISBN:
Category :
Languages : en
Pages : 358

Get Book Here

Book Description


Estimation of Climate Change Effects on Streamflows, Stream Temperatures and Fish Thermal Habitat

Estimation of Climate Change Effects on Streamflows, Stream Temperatures and Fish Thermal Habitat PDF Author: Omid Mohseni
Publisher:
ISBN:
Category :
Languages : en
Pages : 594

Get Book Here

Book Description


Impact of Global Climate Change on Extreme Streamflow

Impact of Global Climate Change on Extreme Streamflow PDF Author: Sabin Shrestha (Civil engineer)
Publisher:
ISBN:
Category : Climatic changes
Languages : en
Pages : 148

Get Book Here

Book Description
There is a widespread concern that climate change will lead to an increased frequency and intensity of extreme weather events in the 21st century. It is essential, from a watershed management point of view to understand how these alterations in the hydrologic regime would affect the existing water resources. This research, therefore, provides an overview of the hydrologic impacts on the Great Miami River Watershed in Ohio, USA due to projected climatic changes on both low flows and high flows. An extensively used hydrological model, the Soil and Water Assessment Tool (SWAT) was to evaluate the hydrological impacts of climate change. The multi-site model calibration and validation were performed using the SUFI-2 algorithm within SWAT-CUP. The model was calibrated (2005 - 2014) and validated (1995 - 2004) for monthly stream flows at the outlet resulting in Nash - Sutcliffe Coefficients of 0.86 and 0.83, respectively. An ensemble of ten downscaled and bias-corrected climate models from Fifth Phase Coupled Model Intercomparison Project (CMIP5) under two Representative Concentration Pathways(RCPs) 4.5 and 8.5 were used to generate a probable set of climate data (precipitation and temperature). The climate data were then fed into the SWAT model and hydrological changes in the stream in terms of daily discharge were produced for three time-frames: (2016 - 2043) as 2035s, (2044 - 2071) as 2055s, and (2072 - 99) as 2085s and compared against the baseline period (1988 - 2015). The findings from this research showed that low flows using both hydrological and biological indices would increase more than 100% in 2035s but eventually decrease slightly in the later part of the century (2085s). However, the Max Planck Institute Earth System Model (MPI-ESM-LR) used in this study predicted that the biological indices iv under RCP 8.5 would increase slightly at the beginning but decrease considerably in the middle and later part of the century. Analysis showed that the variability of the average 7-day low flows in each year would increase considerably for both emission scenarios. Furthermore, 75th percentile exceedance frequency of monthly low flows was found higher in September, October, and November during the study period. As for high flow analysis, the hydrological index for high flows (7Q10) from an ensemble of 10 climate models predicted to decrease consistently in future. When the results from the two RCPs are compared, high flows would decrease maximum by 22% in 2055s under RCP 8.5 and 21% in 2085s under RCP 4.5. However, the MIROC5 model in RCP 4.5 showed 1.2% increase in 7Q10 high flows during 2035s. The frequency of the 75th percentile non-exceedance flows was also projected to increase in the future. Under the RCP 4.5, the frequency becomes higher in 2055s whereas under the RCP 8.5 most frequent 75th percentile flow would occur in 2085s. Meanwhile, on a monthly scale, the peak would increase more on every month except January and December than that of historical records. The variability of peak discharge was also expected to increase in every other month in both scenarios. The peak would increase considerably especially in August, September, and October when compared to historical months, indicating relatively wetter months in the future years. Finally, this study has demonstrated the effects of changing climates projected by the climate models on extreme flow condition in the large agricultural watershed. The next step of the research will focus on further bias correction on simulated climate data and analysis for future.

The Impacts of Climate Change on New York Streamflows

The Impacts of Climate Change on New York Streamflows PDF Author: Ching-pin Tung
Publisher:
ISBN:
Category :
Languages : en
Pages : 270

Get Book Here

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 898

Get Book Here

Book Description


Wild and Scenic River Study Report

Wild and Scenic River Study Report PDF Author: United States. Forest Service
Publisher:
ISBN:
Category : Pere Marquette River
Languages : en
Pages : 198

Get Book Here

Book Description


Climate Change Impacts on Snowmelt-Driven Streamflow in the Grand River Watershed

Climate Change Impacts on Snowmelt-Driven Streamflow in the Grand River Watershed PDF Author: Amy Dietrich
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Climate change is one of the most significant global environmental drivers threatening the quality and quantity of future water resources. Global temperature increases will have significant effects on the hydrologic regime of northern regions due to changes in snowfall and snowmelt. Considerable research has been conducted in western Canada to rigorously quantify snowmelt-driven streamflow processes, however, less focus has been directed towards understanding these processes in eastern Canada and Ontario. In the southern Ontario Grand River Watershed (GRW), snowmelt contributions to streamflow (freshet) make up a significant portion of the annual water yield, and the period of snowmelt is also of key concern for flood mitigation. This thesis aims to quantify historical and projected changes to timing and streamflow during freshet in the Nith River, an unregulated tributary of the Grand River. Climate data (temperature, rainfall, snowfall, and snow proportion) from observations and future scenarios were analyzed to quantify the contributions of climate conditions surrounding the timing and volume of the freshet. The annual timing of snowmelt-driven streamflow was quantified using centre time (CT), and streamflow volumes were quantified by various percentiles of streamflow (Qn) during four periods of the water year (October-December, January-February, March-April, and May-September). Historical trends in streamflow and climate data were examined using hydrometric data (1914-2016) of a stream gauge from the Water Survey of Canada, and climate data (1950-2016) from Environment and Climate Change Canada at two stations. Projected climate data were from an ensemble of models used in the Intergovernmental Panel on Climate Change's Fourth Assessment Report (AR4). A total of nine distinct models ran two scenarios from AR4 for the 2050s; moderate (B1) and high (A1B). These time-slice projections were then used to force the hydrologic model GAWSER to simulate future streamflow data. The results show that CT in the Nith River has advanced by 17 days, on average, from 1914 to 2016 (P=0.036), and the advance is projected to continue as a function of future emissions scenario (approximately 12 days for scenario B1, and 17 days for A1B). Historical CT was weakly negatively correlated with temperature (-0.51, P

Impact of Climate-Change on Water Resources

Impact of Climate-Change on Water Resources PDF Author: Christina Anagnostopoulou
Publisher: MDPI
ISBN: 303650110X
Category : Science
Languages : en
Pages : 142

Get Book Here

Book Description
- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.

Notapecagon, Pere Marquette River

Notapecagon, Pere Marquette River PDF Author: United States. Forest Service
Publisher:
ISBN:
Category : Manistee National Forest (Mich.)
Languages : en
Pages : 28

Get Book Here

Book Description


Modeling the Potential Impacts of Climate Change on Streamflow Variability in the North Fork of Elk Creek Experimental Watershed, West-Central Montana

Modeling the Potential Impacts of Climate Change on Streamflow Variability in the North Fork of Elk Creek Experimental Watershed, West-Central Montana PDF Author: Katie Marie Jorgensen
Publisher:
ISBN:
Category : Watersheds
Languages : en
Pages : 68

Get Book Here

Book Description
This study hypothesizes the effects of global climate change on the hydrologic regime of West-Central Montana, focusing on the North Fork of Elk Creek, a 6.6 km2 (2.6 mi.2) Experimental Watershed. This is important to understand in snowmelt-dominated watersheds, as it is already well documented by current trends and future climate projections that the natural hydrologic regime is experiencing alterations. There have been shifts in the 20th century of the timing of snowmelt trending towards an earlier spring peak flows and declines in the overall snow water equivalent (Regonda et al., 2005; Mote et al., 2005; Hamlet et al., 2005). The goals for this study are to analyze for significant changes in the timing of important hydrologic events, and determine how discharge throughout the year will be altered in the Elk Creek Experimental Watershed (ECEW). To address these issues, a semi-spatial hydrologic model is employed, and run using current meteorological data and under downscaled climate-change scenarios conditions, under three relevant time periods. Snowmelt Runoff Model (SRM) is deterministic and conceptual and is used to generate streamflow in snowmelt dominated basins by the degree-day method (Martinec, 1985). Data is gathered from two SNOTEL sites located within the watershed and streamflow collected directly on the North Fork of Elk Creek. The specific metrics that will be statistically analyzed are mean summer and winter flows, and trends in peak flow and center of mass date timing (Wenger et al., 2009; Regonda et al., 2005). These results can be useful for management purposes because changes in the way water is released from the mountains affects water storage, flooding, and overall watershed resilience such that current practices may need to be accordingly adjusted.