Author: Shing-Tung Yau
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 526
Book Description
Vol. 1 represents a new ed. of papers which were originally published in Essays on mirror manifolds (1992); supplemented by the additional volume: Mirror symmetry 2 which presents papers by both physicists and mathematicians. Mirror symmetry 1 (the 1st volume) constitutes the proceedings of the Mathematical Sciences Research Institute Workshop of 1991.
Essays on Mirror Manifolds
Author: Shing-Tung Yau
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 526
Book Description
Vol. 1 represents a new ed. of papers which were originally published in Essays on mirror manifolds (1992); supplemented by the additional volume: Mirror symmetry 2 which presents papers by both physicists and mathematicians. Mirror symmetry 1 (the 1st volume) constitutes the proceedings of the Mathematical Sciences Research Institute Workshop of 1991.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 526
Book Description
Vol. 1 represents a new ed. of papers which were originally published in Essays on mirror manifolds (1992); supplemented by the additional volume: Mirror symmetry 2 which presents papers by both physicists and mathematicians. Mirror symmetry 1 (the 1st volume) constitutes the proceedings of the Mathematical Sciences Research Institute Workshop of 1991.
Mirror Symmetry III
Author: Duong H. Phong
Publisher: American Mathematical Soc.
ISBN: 0821811932
Category : Mathematics
Languages : en
Pages : 324
Book Description
This volume presents surveys from a workshop held during the theme year in geometry and topology at the Centre de recherches mathematiques (CRM, University of Montreal, Canada). The volume is in some senses a sequel to Mirror Symmetry I (1998) and Mirror Symmetry II (1996), co-published by the AMS and International Press. It is intended for graduate students, research mathematicians and physicists working in mathematics and theoretical physics, especially in algebraic or complex geometry or conformal field theory
Publisher: American Mathematical Soc.
ISBN: 0821811932
Category : Mathematics
Languages : en
Pages : 324
Book Description
This volume presents surveys from a workshop held during the theme year in geometry and topology at the Centre de recherches mathematiques (CRM, University of Montreal, Canada). The volume is in some senses a sequel to Mirror Symmetry I (1998) and Mirror Symmetry II (1996), co-published by the AMS and International Press. It is intended for graduate students, research mathematicians and physicists working in mathematics and theoretical physics, especially in algebraic or complex geometry or conformal field theory
Mirror Symmetry I
Author: Shing-Tung Yau
Publisher: American Mathematical Soc.
ISBN: 082182743X
Category : Mathematics
Languages : en
Pages : 460
Book Description
Vol. 1 represents a new ed. of papers which were originally published in Essays on mirror manifolds (1992); supplemented by the additional volume: Mirror symmetry 2 which presents papers by both physicists and mathematicians. Mirror symmetry 1 (the 1st volume) constitutes the proceedings of the Mathematical Sciences Research Institute Workshop of 1991.
Publisher: American Mathematical Soc.
ISBN: 082182743X
Category : Mathematics
Languages : en
Pages : 460
Book Description
Vol. 1 represents a new ed. of papers which were originally published in Essays on mirror manifolds (1992); supplemented by the additional volume: Mirror symmetry 2 which presents papers by both physicists and mathematicians. Mirror symmetry 1 (the 1st volume) constitutes the proceedings of the Mathematical Sciences Research Institute Workshop of 1991.
Mirror Symmetry II
Author: Brian Greene
Publisher: American Mathematical Soc.
ISBN: 0821827448
Category : Mathematics
Languages : en
Pages : 862
Book Description
Mirror Symmetry has undergone dramatic progress since the Mathematical Sciences Research Institute (MSRI) workshop in 1991, whose proceedings constitute voluem I of this continuing collection. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics. Titles in this series are co-published, between the American Mathematical Society and International Press, Cambridge, MA, USA.
Publisher: American Mathematical Soc.
ISBN: 0821827448
Category : Mathematics
Languages : en
Pages : 862
Book Description
Mirror Symmetry has undergone dramatic progress since the Mathematical Sciences Research Institute (MSRI) workshop in 1991, whose proceedings constitute voluem I of this continuing collection. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics. Titles in this series are co-published, between the American Mathematical Society and International Press, Cambridge, MA, USA.
Mirror Symmetry
Author: Claire Voisin
Publisher: American Mathematical Soc.
ISBN: 9780821819470
Category : Mathematics
Languages : en
Pages : 148
Book Description
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the Calabi-Yau case. The book concludes with the first "naive" Givental computation, which is a mysterious mathematical justification of the computation of Candelas, et al.
Publisher: American Mathematical Soc.
ISBN: 9780821819470
Category : Mathematics
Languages : en
Pages : 148
Book Description
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the Calabi-Yau case. The book concludes with the first "naive" Givental computation, which is a mysterious mathematical justification of the computation of Candelas, et al.
Mirror Symmetry
Author: Kentaro Hori
Publisher: American Mathematical Soc.
ISBN: 0821829556
Category : Mathematics
Languages : en
Pages : 954
Book Description
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Publisher: American Mathematical Soc.
ISBN: 0821829556
Category : Mathematics
Languages : en
Pages : 954
Book Description
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
String-Math 2011
Author: Jonathan Block
Publisher: American Mathematical Soc.
ISBN: 0821872958
Category : Mathematics
Languages : en
Pages : 506
Book Description
The nature of interactions between mathematicians and physicists has been thoroughly transformed in recent years. String theory and quantum field theory have contributed a series of profound ideas that gave rise to entirely new mathematical fields and revitalized older ones. The influence flows in both directions, with mathematical techniques and ideas contributing crucially to major advances in string theory. A large and rapidly growing number of both mathematicians and physicists are working at the string-theoretic interface between the two academic fields. The String-Math conference series aims to bring together leading mathematicians and mathematically minded physicists working in this interface. This volume contains the proceedings of the inaugural conference in this series, String-Math 2011, which was held June 6-11, 2011, at the University of Pennsylvania.
Publisher: American Mathematical Soc.
ISBN: 0821872958
Category : Mathematics
Languages : en
Pages : 506
Book Description
The nature of interactions between mathematicians and physicists has been thoroughly transformed in recent years. String theory and quantum field theory have contributed a series of profound ideas that gave rise to entirely new mathematical fields and revitalized older ones. The influence flows in both directions, with mathematical techniques and ideas contributing crucially to major advances in string theory. A large and rapidly growing number of both mathematicians and physicists are working at the string-theoretic interface between the two academic fields. The String-Math conference series aims to bring together leading mathematicians and mathematically minded physicists working in this interface. This volume contains the proceedings of the inaugural conference in this series, String-Math 2011, which was held June 6-11, 2011, at the University of Pennsylvania.
Classical Mirror Symmetry
Author: Masao Jinzenji
Publisher: Springer
ISBN: 9811300569
Category : Science
Languages : en
Pages : 147
Book Description
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold.First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold.On the B-model side, the process of construction of a pair of mirror Calabi–Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard–Fuchs differential equation of the period integrals and on the process of deriving the instanton expansion of the A-model Yukawa coupling based on the mirror symmetry hypothesis.On the A-model side, the moduli space of degree d quasimaps from CP^1 with two marked points to CP^4 is introduced, with reconstruction of the period integrals used in the B-model side as generating functions of the intersection numbers of the moduli space. Lastly, a mathematical justification for the process of the B-model computation from the point of view of the geometry of the moduli space of quasimaps is given.The style of description is between that of mathematics and physics, with the assumption that readers have standard graduate student backgrounds in both disciplines.
Publisher: Springer
ISBN: 9811300569
Category : Science
Languages : en
Pages : 147
Book Description
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold.First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold.On the B-model side, the process of construction of a pair of mirror Calabi–Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard–Fuchs differential equation of the period integrals and on the process of deriving the instanton expansion of the A-model Yukawa coupling based on the mirror symmetry hypothesis.On the A-model side, the moduli space of degree d quasimaps from CP^1 with two marked points to CP^4 is introduced, with reconstruction of the period integrals used in the B-model side as generating functions of the intersection numbers of the moduli space. Lastly, a mathematical justification for the process of the B-model computation from the point of view of the geometry of the moduli space of quasimaps is given.The style of description is between that of mathematics and physics, with the assumption that readers have standard graduate student backgrounds in both disciplines.
Quantum Fields and Strings: A Course for Mathematicians
Author: Pierre Deligne
Publisher: American Mathematical Society
ISBN: 0821820133
Category : Mathematics
Languages : en
Pages : 801
Book Description
A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.
Publisher: American Mathematical Society
ISBN: 0821820133
Category : Mathematics
Languages : en
Pages : 801
Book Description
A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.
Global Aspects of Complex Geometry
Author: Fabrizio Catanese
Publisher: Springer Science & Business Media
ISBN: 3540354808
Category : Mathematics
Languages : en
Pages : 508
Book Description
This collection of surveys present an overview of recent developments in Complex Geometry. Topics range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kähler geometry, and group actions to Hodge theory and characteristic p-geometry. Written by established experts this book will be a must for mathematicians working in Complex Geometry
Publisher: Springer Science & Business Media
ISBN: 3540354808
Category : Mathematics
Languages : en
Pages : 508
Book Description
This collection of surveys present an overview of recent developments in Complex Geometry. Topics range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kähler geometry, and group actions to Hodge theory and characteristic p-geometry. Written by established experts this book will be a must for mathematicians working in Complex Geometry