Author: Gérard Meurant
Publisher: SIAM
ISBN: 161197786X
Category : Mathematics
Languages : en
Pages : 138
Book Description
The conjugate gradient (CG) algorithm is almost always the iterative method of choice for solving linear systems with symmetric positive definite matrices. This book describes and analyzes techniques based on Gauss quadrature rules to cheaply compute bounds on norms of the error. The techniques can be used to derive reliable stopping criteria. How to compute estimates of the smallest and largest eigenvalues during CG iterations is also shown. The algorithms are illustrated by many numerical experiments, and they can be easily incorporated into existing CG codes. The book is intended for those in academia and industry who use the conjugate gradient algorithm, including the many branches of science and engineering in which symmetric linear systems have to be solved.
Error Norm Estimation in the Conjugate Gradient Algorithm
Author: Gérard Meurant
Publisher: SIAM
ISBN: 161197786X
Category : Mathematics
Languages : en
Pages : 138
Book Description
The conjugate gradient (CG) algorithm is almost always the iterative method of choice for solving linear systems with symmetric positive definite matrices. This book describes and analyzes techniques based on Gauss quadrature rules to cheaply compute bounds on norms of the error. The techniques can be used to derive reliable stopping criteria. How to compute estimates of the smallest and largest eigenvalues during CG iterations is also shown. The algorithms are illustrated by many numerical experiments, and they can be easily incorporated into existing CG codes. The book is intended for those in academia and industry who use the conjugate gradient algorithm, including the many branches of science and engineering in which symmetric linear systems have to be solved.
Publisher: SIAM
ISBN: 161197786X
Category : Mathematics
Languages : en
Pages : 138
Book Description
The conjugate gradient (CG) algorithm is almost always the iterative method of choice for solving linear systems with symmetric positive definite matrices. This book describes and analyzes techniques based on Gauss quadrature rules to cheaply compute bounds on norms of the error. The techniques can be used to derive reliable stopping criteria. How to compute estimates of the smallest and largest eigenvalues during CG iterations is also shown. The algorithms are illustrated by many numerical experiments, and they can be easily incorporated into existing CG codes. The book is intended for those in academia and industry who use the conjugate gradient algorithm, including the many branches of science and engineering in which symmetric linear systems have to be solved.
Error Norm Estimation in the Conjugate Gradient Algorithm
Author: Gérard A. Meurant
Publisher:
ISBN: 9781611977851
Category : Algorithms
Languages : en
Pages : 0
Book Description
"Describes techniques based on Gauss quadrature rules to cheaply compute bounds on norms of the error and analyzes them"--
Publisher:
ISBN: 9781611977851
Category : Algorithms
Languages : en
Pages : 0
Book Description
"Describes techniques based on Gauss quadrature rules to cheaply compute bounds on norms of the error and analyzes them"--
The Lanczos and Conjugate Gradient Algorithms
Author: Gerard Meurant
Publisher: SIAM
ISBN: 9780898718140
Category : Computers
Languages : en
Pages : 380
Book Description
The Lanczos and conjugate gradient (CG) algorithms are fascinating numerical algorithms. This book presents the most comprehensive discussion to date of the use of these methods for computing eigenvalues and solving linear systems in both exact and floating point arithmetic. The author synthesizes the research done over the past 30 years, describing and explaining the "average" behavior of these methods and providing new insight into their properties in finite precision. Many examples are given that show significant results obtained by researchers in the field. The author emphasizes how both algorithms can be used efficiently in finite precision arithmetic, regardless of the growth of rounding errors that occurs. He details the mathematical properties of both algorithms and demonstrates how the CG algorithm is derived from the Lanczos algorithm. Loss of orthogonality involved with using the Lanczos algorithm, ways to improve the maximum attainable accuracy of CG computations, and what modifications need to be made when the CG method is used with a preconditioner are addressed.
Publisher: SIAM
ISBN: 9780898718140
Category : Computers
Languages : en
Pages : 380
Book Description
The Lanczos and conjugate gradient (CG) algorithms are fascinating numerical algorithms. This book presents the most comprehensive discussion to date of the use of these methods for computing eigenvalues and solving linear systems in both exact and floating point arithmetic. The author synthesizes the research done over the past 30 years, describing and explaining the "average" behavior of these methods and providing new insight into their properties in finite precision. Many examples are given that show significant results obtained by researchers in the field. The author emphasizes how both algorithms can be used efficiently in finite precision arithmetic, regardless of the growth of rounding errors that occurs. He details the mathematical properties of both algorithms and demonstrates how the CG algorithm is derived from the Lanczos algorithm. Loss of orthogonality involved with using the Lanczos algorithm, ways to improve the maximum attainable accuracy of CG computations, and what modifications need to be made when the CG method is used with a preconditioner are addressed.
The Lanczos and Conjugate Gradient Algorithms
Author: Gerard Meurant
Publisher: SIAM
ISBN: 0898716160
Category : Computers
Languages : en
Pages : 374
Book Description
The most comprehensive and up-to-date discussion available of the Lanczos and CG methods for computing eigenvalues and solving linear systems.
Publisher: SIAM
ISBN: 0898716160
Category : Computers
Languages : en
Pages : 374
Book Description
The most comprehensive and up-to-date discussion available of the Lanczos and CG methods for computing eigenvalues and solving linear systems.
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs
Author: Josef Malek
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Matrices, Moments and Quadrature with Applications
Author: Gene H. Golub
Publisher: Princeton University Press
ISBN: 1400833884
Category : Mathematics
Languages : en
Pages : 376
Book Description
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.
Publisher: Princeton University Press
ISBN: 1400833884
Category : Mathematics
Languages : en
Pages : 376
Book Description
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Advanced Numerical Methods for Complex Environmental Models: Needs and Availability
Author: István Faragó
Publisher: Bentham Science Publishers
ISBN: 160805778X
Category : Nature
Languages : en
Pages : 437
Book Description
High air pollution levels pose a significant threat to plants, animals and human beings. Efforts by researchers are directed towards keeping air pollution levels below well defined ‘critical‘ levels in order to maintain a sustainable atmosphere and environmental system. The application of advanced mathematical models is important for researchers to achieve this goal as efficiently as possible. Mathematical models can be used to predict answers to many important questions about the environment. This application comes with several complex theoretical and practical obstacles which need to be resolved. A successfully applicable mathematical model needs to enable researchers to • Mathematically describe all important physical and chemical processes. • Apply fast and sufficiently accurate numerical methods. • Ensure that the model runs efficiently on modern high speed computers. • Use high quality input data, both meteorological data and emission inventories, in the runs. • Verify the model results by comparing them with reliable measurements taken in different parts of the spatial domain of the model. • Carry out long series of sensitivity experiments to check the response of the model to changes of different key parameters. • Visualize and animate the output results in order to make them easily understandable even to non-specialists. This monograph thoroughly describes mathematical methods useful for various situations in environmental modeling - including finite difference methods, splitting methods, parallel computation, etc. - and provides a framework for resolving problems posed in relation to the points listed above. Chapters are written by well-known specialists making this book a handy reference for researchers, university teachers and students working and studying in the areas of air pollution, meteorology, applied mathematics and computer science.
Publisher: Bentham Science Publishers
ISBN: 160805778X
Category : Nature
Languages : en
Pages : 437
Book Description
High air pollution levels pose a significant threat to plants, animals and human beings. Efforts by researchers are directed towards keeping air pollution levels below well defined ‘critical‘ levels in order to maintain a sustainable atmosphere and environmental system. The application of advanced mathematical models is important for researchers to achieve this goal as efficiently as possible. Mathematical models can be used to predict answers to many important questions about the environment. This application comes with several complex theoretical and practical obstacles which need to be resolved. A successfully applicable mathematical model needs to enable researchers to • Mathematically describe all important physical and chemical processes. • Apply fast and sufficiently accurate numerical methods. • Ensure that the model runs efficiently on modern high speed computers. • Use high quality input data, both meteorological data and emission inventories, in the runs. • Verify the model results by comparing them with reliable measurements taken in different parts of the spatial domain of the model. • Carry out long series of sensitivity experiments to check the response of the model to changes of different key parameters. • Visualize and animate the output results in order to make them easily understandable even to non-specialists. This monograph thoroughly describes mathematical methods useful for various situations in environmental modeling - including finite difference methods, splitting methods, parallel computation, etc. - and provides a framework for resolving problems posed in relation to the points listed above. Chapters are written by well-known specialists making this book a handy reference for researchers, university teachers and students working and studying in the areas of air pollution, meteorology, applied mathematics and computer science.
Krylov Methods for Nonsymmetric Linear Systems
Author: Gérard Meurant
Publisher: Springer Nature
ISBN: 3030552519
Category : Mathematics
Languages : en
Pages : 691
Book Description
This book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties. Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing. The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods’ implementations and coding as Matlab®-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods. This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations.
Publisher: Springer Nature
ISBN: 3030552519
Category : Mathematics
Languages : en
Pages : 691
Book Description
This book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties. Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing. The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods’ implementations and coding as Matlab®-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods. This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations.
Milestones in Matrix Computation : The selected works of Gene H. Golub with commentaries
Author: Raymond Chan
Publisher: OUP Oxford
ISBN: 9780199206810
Category : Mathematics
Languages : en
Pages : 584
Book Description
The text presents and discusses some of the most influential papers in Matrix Computation authored by Gene H. Golub, one of the founding fathers of the field. The collection of 21 papers is divided into five main areas: iterative methods for linear systems, solution of least squares problems, matrix factorizations and applications, orthogonal polynomials and quadrature, and eigenvalue problems. Commentaries for each area are provided by leading experts: Anne Greenbaum, Ake Bjorck, Nicholas Higham, Walter Gautschi, and G. W. (Pete) Stewart. Comments on each paper are also included by the original authors, providing the reader with historical information on how the paper came to be written and under what circumstances the collaboration was undertaken. Including a brief biography and facsimiles of the original papers, this text will be of great interest to students and researchers in numerical analysis and scientific computation.
Publisher: OUP Oxford
ISBN: 9780199206810
Category : Mathematics
Languages : en
Pages : 584
Book Description
The text presents and discusses some of the most influential papers in Matrix Computation authored by Gene H. Golub, one of the founding fathers of the field. The collection of 21 papers is divided into five main areas: iterative methods for linear systems, solution of least squares problems, matrix factorizations and applications, orthogonal polynomials and quadrature, and eigenvalue problems. Commentaries for each area are provided by leading experts: Anne Greenbaum, Ake Bjorck, Nicholas Higham, Walter Gautschi, and G. W. (Pete) Stewart. Comments on each paper are also included by the original authors, providing the reader with historical information on how the paper came to be written and under what circumstances the collaboration was undertaken. Including a brief biography and facsimiles of the original papers, this text will be of great interest to students and researchers in numerical analysis and scientific computation.