Error and the Growth of Experimental Knowledge

Error and the Growth of Experimental Knowledge PDF Author: Deborah G. Mayo
Publisher: University of Chicago Press
ISBN: 9780226511979
Category : Mathematics
Languages : en
Pages : 520

Get Book Here

Book Description
Preface1: Learning from Error 2: Ducks, Rabbits, and Normal Science: Recasting the Kuhn's-Eye View of Popper 3: The New Experimentalism and the Bayesian Way 4: Duhem, Kuhn, and Bayes 5: Models of Experimental Inquiry 6: Severe Tests and Methodological Underdetermination7: The Experimental Basis from Which to Test Hypotheses: Brownian Motion8: Severe Tests and Novel Evidence 9: Hunting and Snooping: Understanding the Neyman-Pearson Predesignationist Stance10: Why You Cannot Be Just a Little Bit Bayesian 11: Why Pearson Rejected the Neyman-Pearson (Behavioristic) Philosophy and a Note on Objectivity in Statistics12: Error Statistics and Peircean Error Correction 13: Toward an Error-Statistical Philosophy of Science ReferencesIndex Copyright © Libri GmbH. All rights reserved.

Error and the Growth of Experimental Knowledge

Error and the Growth of Experimental Knowledge PDF Author: Deborah G. Mayo
Publisher: University of Chicago Press
ISBN: 9780226511979
Category : Mathematics
Languages : en
Pages : 520

Get Book Here

Book Description
Preface1: Learning from Error 2: Ducks, Rabbits, and Normal Science: Recasting the Kuhn's-Eye View of Popper 3: The New Experimentalism and the Bayesian Way 4: Duhem, Kuhn, and Bayes 5: Models of Experimental Inquiry 6: Severe Tests and Methodological Underdetermination7: The Experimental Basis from Which to Test Hypotheses: Brownian Motion8: Severe Tests and Novel Evidence 9: Hunting and Snooping: Understanding the Neyman-Pearson Predesignationist Stance10: Why You Cannot Be Just a Little Bit Bayesian 11: Why Pearson Rejected the Neyman-Pearson (Behavioristic) Philosophy and a Note on Objectivity in Statistics12: Error Statistics and Peircean Error Correction 13: Toward an Error-Statistical Philosophy of Science ReferencesIndex Copyright © Libri GmbH. All rights reserved.

Error and the Growth of Experimental Knowledge

Error and the Growth of Experimental Knowledge PDF Author: Deborah G. Mayo
Publisher: University of Chicago Press
ISBN: 9780226511979
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
We may learn from our mistakes, but Deborah Mayo argues that, where experimental knowledge is concerned, we haven't begun to learn enough. Error and the Growth of Experimental Knowledge launches a vigorous critique of the subjective Bayesian view of statistical inference, and proposes Mayo's own error-statistical approach as a more robust framework for the epistemology of experiment. Mayo genuinely addresses the needs of researchers who work with statistical analysis, and simultaneously engages the basic philosophical problems of objectivity and rationality. Mayo has long argued for an account of learning from error that goes far beyond detecting logical inconsistencies. In this book, she presents her complete program for how we learn about the world by being "shrewd inquisitors of error, white gloves off." Her tough, practical approach will be important to philosophers, historians, and sociologists of science, and will be welcomed by researchers in the physical, biological, and social sciences whose work depends upon statistical analysis.

Error and the Growth of Experimental Knowledge

Error and the Growth of Experimental Knowledge PDF Author: Deborah G. Mayo
Publisher: University of Chicago Press
ISBN: 0226511987
Category : Mathematics
Languages : en
Pages : 512

Get Book Here

Book Description
Preface1: Learning from Error 2: Ducks, Rabbits, and Normal Science: Recasting the Kuhn's-Eye View of Popper 3: The New Experimentalism and the Bayesian Way 4: Duhem, Kuhn, and Bayes 5: Models of Experimental Inquiry 6: Severe Tests and Methodological Underdetermination7: The Experimental Basis from Which to Test Hypotheses: Brownian Motion8: Severe Tests and Novel Evidence 9: Hunting and Snooping: Understanding the Neyman-Pearson Predesignationist Stance10: Why You Cannot Be Just a Little Bit Bayesian 11: Why Pearson Rejected the Neyman-Pearson (Behavioristic) Philosophy and a Note on Objectivity in Statistics12: Error Statistics and Peircean Error Correction 13: Toward an Error-Statistical Philosophy of Science ReferencesIndex Copyright © Libri GmbH. All rights reserved.

Error and Inference

Error and Inference PDF Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1139485369
Category : Science
Languages : en
Pages : 491

Get Book Here

Book Description
Although both philosophers and scientists are interested in how to obtain reliable knowledge in the face of error, there is a gap between their perspectives that has been an obstacle to progress. By means of a series of exchanges between the editors and leaders from the philosophy of science, statistics and economics, this volume offers a cumulative introduction connecting problems of traditional philosophy of science to problems of inference in statistical and empirical modelling practice. Philosophers of science and scientific practitioners are challenged to reevaluate the assumptions of their own theories - philosophical or methodological. Practitioners may better appreciate the foundational issues around which their questions revolve and thereby become better 'applied philosophers'. Conversely, new avenues emerge for finally solving recalcitrant philosophical problems of induction, explanation and theory testing.

Statistical Inference as Severe Testing

Statistical Inference as Severe Testing PDF Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Reproducibility and Replicability in Science

Reproducibility and Replicability in Science PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309486165
Category : Science
Languages : en
Pages : 257

Get Book Here

Book Description
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.

The Design of Experiments

The Design of Experiments PDF Author: Sir Ronald Aylmer Fisher
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 248

Get Book Here

Book Description


Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition PDF Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677

Get Book Here

Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Criticism and the Growth of Knowledge: Volume 4

Criticism and the Growth of Knowledge: Volume 4 PDF Author: Imre Lakatos
Publisher: Cambridge University Press
ISBN: 9780521078269
Category : Science
Languages : en
Pages : 290

Get Book Here

Book Description
Two books have been particularly influential in contemporary philosophy of science: Karl R. Popper's Logic of Scientific Discovery, and Thomas S. Kuhn's Structure of Scientific Revolutions. Both agree upon the importance of revolutions in science, but differ about the role of criticism in science's revolutionary growth. This volume arose out of a symposium on Kuhn's work, with Popper in the chair, at an international colloquium held in London in 1965. The book begins with Kuhn's statement of his position followed by seven essays offering criticism and analysis, and finally by Kuhn's reply. The book will interest senior undergraduates and graduate students of the philosophy and history of science, as well as professional philosophers, philosophically inclined scientists, and some psychologists and sociologists.

Experimental and Quasi-Experimental Designs for Research

Experimental and Quasi-Experimental Designs for Research PDF Author: Donald T. Campbell
Publisher: Ravenio Books
ISBN:
Category : Psychology
Languages : en
Pages : 172

Get Book Here

Book Description
We shall examine the validity of 16 experimental designs against 12 common threats to valid inference. By experiment we refer to that portion of research in which variables are manipulated and their effects upon other variables observed. It is well to distinguish the particular role of this chapter. It is not a chapter on experimental design in the Fisher (1925, 1935) tradition, in which an experimenter having complete mastery can schedule treatments and measurements for optimal statistical efficiency, with complexity of design emerging only from that goal of efficiency. Insofar as the designs discussed in the present chapter become complex, it is because of the intransigency of the environment: because, that is, of the experimenter’s lack of complete control.