Equivalent-Continuum Modeling With Application to Carbon Nanotubes

Equivalent-Continuum Modeling With Application to Carbon Nanotubes PDF Author:
Publisher:
ISBN:
Category : Continuum mechanics
Languages : en
Pages : 32

Get Book Here

Book Description
A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet, A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent-continuum models. As a result, an effective thickness of the continuum model has been determined.

Equivalent-Continuum Modeling With Application to Carbon Nanotubes

Equivalent-Continuum Modeling With Application to Carbon Nanotubes PDF Author:
Publisher:
ISBN:
Category : Continuum mechanics
Languages : en
Pages : 32

Get Book Here

Book Description
A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet, A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent-continuum models. As a result, an effective thickness of the continuum model has been determined.

Equivalent-Continuum Modeling with Application to Carbon Nanotubes

Equivalent-Continuum Modeling with Application to Carbon Nanotubes PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781723723605
Category : Science
Languages : en
Pages : 32

Get Book Here

Book Description
A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.Odegard, Gregory M. and Gates, Thomas S. and Nicholson, Lee M. and Wise, Kristopher E.Langley Research CenterCARBON NANOTUBES; CONTINUUM MODELING; SOLID MECHANICS; NANOTECHNOLOGY; GRAPHITE; POTENTIAL ENERGY; TRUSSES; VIBRATION; BENDING

Equivalent-continuum Modeling of Nano-structured Materials

Equivalent-continuum Modeling of Nano-structured Materials PDF Author: Gregory M. Odegard
Publisher:
ISBN:
Category : Nanostructured materials
Languages : en
Pages : 38

Get Book Here

Book Description
A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

Carbon Nanotube-Reinforced Polymers

Carbon Nanotube-Reinforced Polymers PDF Author: Roham Rafiee
Publisher: Elsevier
ISBN: 0323482228
Category : Science
Languages : en
Pages : 588

Get Book Here

Book Description
Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. - Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations - Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components - Analyzes the behavior of carbon nanotube-based composites in different conditions

Carbon Nanotubes and Nanosensors

Carbon Nanotubes and Nanosensors PDF Author: Isaac Elishakoff
Publisher: John Wiley & Sons
ISBN: 1118565886
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
The main properties that make carbon nanotubes (CNTs) a promising technology for many future applications are: extremely high strength, low mass density, linear elastic behavior, almost perfect geometrical structure, and nanometer scale structure. Also, CNTs can conduct electricity better than copper and transmit heat better than diamonds. Therefore, they are bound to find a wide, and possibly revolutionary use in all fields of engineering. The interest in CNTs and their potential use in a wide range of commercial applications; such as nanoelectronics, quantum wire interconnects, field emission devices, composites, chemical sensors, biosensors, detectors, etc.; have rapidly increased in the last two decades. However, the performance of any CNT-based nanostructure is dependent on the mechanical properties of constituent CNTs. Therefore, it is crucial to know the mechanical behavior of individual CNTs such as their vibration frequencies, buckling loads, and deformations under different loadings. This title is dedicated to the vibration, buckling and impact behavior of CNTs, along with theory for carbon nanosensors, like the Bubnov-Galerkin and the Petrov-Galerkin methods, the Bresse-Timoshenko and the Donnell shell theory.

Computational Physics of Carbon Nanotubes

Computational Physics of Carbon Nanotubes PDF Author: Hashem Rafii-Tabar
Publisher: Cambridge University Press
ISBN: 0521853001
Category : Technology & Engineering
Languages : en
Pages : 477

Get Book Here

Book Description
This book presents the key theories, computational modelling and numerical simulation tools required to understand carbon nanotube physics. Specifically, methods applied to geometry and bonding, mechanical, thermal, transport and storage properties are addressed. This self-contained book will interest researchers across a broad range of disciplines.

Foundations of Nanotechnology, Volume Three

Foundations of Nanotechnology, Volume Three PDF Author: Saeedeh Rafiei
Publisher: CRC Press
ISBN: 1498703704
Category : Science
Languages : en
Pages : 290

Get Book Here

Book Description
In this research notes book, the modelling of mechanical properties of CNT/polymer nanocomposites is presented. The book begins with the structural and intrinsic mechanical properties of CNTs and then introduces computational methods that have been applied to polymer nanocomposites, covering from molecular scale (molecular dynamics, Monte Carlo), m

Wave Propagation in Nanostructures

Wave Propagation in Nanostructures PDF Author: Srinivasan Gopalakrishnan
Publisher: Springer Science & Business Media
ISBN: 3319010328
Category : Science
Languages : en
Pages : 365

Get Book Here

Book Description
Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and Graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behavior in these low dimensional structures.

Computational Continuum Mechanics of Nanoscopic Structures

Computational Continuum Mechanics of Nanoscopic Structures PDF Author: Esmaeal Ghavanloo
Publisher: Springer
ISBN: 3030116506
Category : Science
Languages : en
Pages : 281

Get Book Here

Book Description
This book offers a comprehensive treatment of nonlocal elasticity theory as applied to the prediction of the mechanical characteristics of various types of biological and non-biological nanoscopic structures with different morphologies and functional behaviour. It combines fundamental notions and advanced concepts, covering both the theory of nonlocal elasticity and the mechanics of nanoscopic structures and systems. By reporting on recent findings and discussing future challenges, the book seeks to foster the application of nonlocal elasticity based approaches to the emerging fields of nanoscience and nanotechnology. It is a self-contained guide, and covers all relevant background information, the requisite mathematical and computational techniques, theoretical assumptions, physical methods and possible limitations of the nonlocal approach, including some practical applications. Mainly written for researchers in the fields of physics, biophysics, mechanics, and nanoscience, as well as computational engineers, the book can also be used as a reference guide for senior undergraduate and graduate students, as well as practicing engineers working in a range of areas, such as computational condensed matter physics, computational materials science, computational nanoscience and nanotechnology, and nanomechanics.

Characterization of Nanocomposites

Characterization of Nanocomposites PDF Author: Frank Abdi
Publisher: CRC Press
ISBN: 1315341247
Category : Science
Languages : en
Pages : 317

Get Book Here

Book Description
These days, advanced multiscale hybrid materials are being produced in the industry, studied by universities, and used in several applications. Unlike for macromaterials, it is difficult to obtain the physical, mechanical, electrical, and thermal properties of nanomaterials because of the scale. Designers, however, must have knowledge of these properties to perform any finite element analysis or durability and damage tolerance analysis. This is the book that brings this knowledge within easy reach. What makes the book unique is the fact that its approach that combines multiscale multiphysics and statistical analysis with multiscale progressive failure analysis. The combination gives a very powerful tool for minimizing tests, improving accuracy, and understanding the effect of the statistical nature of materials, in addition to the mechanics of advanced multiscale materials, all the way to failure. The book focuses on obtaining valid mechanical properties of nanocomposite materials by accurate prediction and observed physical tests, as well as by evaluation of test anomalies of advanced multiscale nanocomposites containing nanoparticles of different shapes, such as chopped fiber, spherical, and platelet, in polymeric, ceramic, and metallic materials. The prediction capability covers delamination, fracture toughness, impact resistance, conductivity, and fire resistance of nanocomposites. The methodology employs a high-fidelity procedure backed with comparison of predictions with test data for various types of static, fatigue, dynamic, and crack growth problems. Using the proposed approach, a good correlation between the simulation and experimental data is established.