Author: Peter J. Olver
Publisher: Cambridge University Press
ISBN: 9780521478113
Category : Mathematics
Languages : en
Pages : 546
Book Description
Drawing on a wide range of mathematical disciplines, including geometry, analysis, applied mathematics and algebra, this book presents an innovative synthesis of methods used to study problems of equivalence and symmetry which arise in a variety of mathematical fields and physical applications. Systematic and constructive methods for solving equivalence problems and calculating symmetries are developed and applied to a wide variety of mathematical systems, including differential equations, variational problems, manifolds, Riemannian metrics, polynomials and differential operators. Particular emphasis is given to the construction and classification of invariants, and to the reductions of complicated objects to simple canonical forms. This book will be a valuable resource for students and researchers in geometry, analysis, algebra, mathematical physics and other related fields.
Equivalence, Invariants and Symmetry
Author: Peter J. Olver
Publisher: Cambridge University Press
ISBN: 9780521478113
Category : Mathematics
Languages : en
Pages : 546
Book Description
Drawing on a wide range of mathematical disciplines, including geometry, analysis, applied mathematics and algebra, this book presents an innovative synthesis of methods used to study problems of equivalence and symmetry which arise in a variety of mathematical fields and physical applications. Systematic and constructive methods for solving equivalence problems and calculating symmetries are developed and applied to a wide variety of mathematical systems, including differential equations, variational problems, manifolds, Riemannian metrics, polynomials and differential operators. Particular emphasis is given to the construction and classification of invariants, and to the reductions of complicated objects to simple canonical forms. This book will be a valuable resource for students and researchers in geometry, analysis, algebra, mathematical physics and other related fields.
Publisher: Cambridge University Press
ISBN: 9780521478113
Category : Mathematics
Languages : en
Pages : 546
Book Description
Drawing on a wide range of mathematical disciplines, including geometry, analysis, applied mathematics and algebra, this book presents an innovative synthesis of methods used to study problems of equivalence and symmetry which arise in a variety of mathematical fields and physical applications. Systematic and constructive methods for solving equivalence problems and calculating symmetries are developed and applied to a wide variety of mathematical systems, including differential equations, variational problems, manifolds, Riemannian metrics, polynomials and differential operators. Particular emphasis is given to the construction and classification of invariants, and to the reductions of complicated objects to simple canonical forms. This book will be a valuable resource for students and researchers in geometry, analysis, algebra, mathematical physics and other related fields.
Structure and Equivalence
Author: Neil Dewar
Publisher: Cambridge University Press
ISBN: 1108910467
Category : Philosophy
Languages : en
Pages : 82
Book Description
This Element explores what it means for two theories in physics to be equivalent (or inequivalent), and what lessons can be drawn about their structure as a result. It does so through a twofold approach. On the one hand, it provides a synoptic overview of the logical tools that have been employed in recent philosophy of physics to explore these topics: definition, translation, Ramsey sentences, and category theory. On the other, it provides a detailed case study of how these ideas may be applied to understand the dynamical and spatiotemporal structure of Newtonian mechanics - in particular, in light of the symmetries of Newtonian theory. In so doing, it brings together a great deal of exciting recent work in the literature, and is sure to be a valuable companion for all those interested in these topics.
Publisher: Cambridge University Press
ISBN: 1108910467
Category : Philosophy
Languages : en
Pages : 82
Book Description
This Element explores what it means for two theories in physics to be equivalent (or inequivalent), and what lessons can be drawn about their structure as a result. It does so through a twofold approach. On the one hand, it provides a synoptic overview of the logical tools that have been employed in recent philosophy of physics to explore these topics: definition, translation, Ramsey sentences, and category theory. On the other, it provides a detailed case study of how these ideas may be applied to understand the dynamical and spatiotemporal structure of Newtonian mechanics - in particular, in light of the symmetries of Newtonian theory. In so doing, it brings together a great deal of exciting recent work in the literature, and is sure to be a valuable companion for all those interested in these topics.
Symmetries, Differential Equations and Applications
Author: Victor G. Kac
Publisher: Springer
ISBN: 3030013766
Category : Mathematics
Languages : en
Pages : 204
Book Description
Based on the third International Conference on Symmetries, Differential Equations and Applications (SDEA-III), this proceedings volume highlights recent important advances and trends in the applications of Lie groups, including a broad area of topics in interdisciplinary studies, ranging from mathematical physics to financial mathematics. The selected and peer-reviewed contributions gathered here cover Lie theory and symmetry methods in differential equations, Lie algebras and Lie pseudogroups, super-symmetry and super-integrability, representation theory of Lie algebras, classification problems, conservation laws, and geometrical methods. The SDEA III, held in honour of the Centenary of Noether’s Theorem, proven by the prominent German mathematician Emmy Noether, at Istanbul Technical University in August 2017 provided a productive forum for academic researchers, both junior and senior, and students to discuss and share the latest developments in the theory and applications of Lie symmetry groups. This work has an interdisciplinary appeal and will be a valuable read for researchers in mathematics, mechanics, physics, engineering, medicine and finance.
Publisher: Springer
ISBN: 3030013766
Category : Mathematics
Languages : en
Pages : 204
Book Description
Based on the third International Conference on Symmetries, Differential Equations and Applications (SDEA-III), this proceedings volume highlights recent important advances and trends in the applications of Lie groups, including a broad area of topics in interdisciplinary studies, ranging from mathematical physics to financial mathematics. The selected and peer-reviewed contributions gathered here cover Lie theory and symmetry methods in differential equations, Lie algebras and Lie pseudogroups, super-symmetry and super-integrability, representation theory of Lie algebras, classification problems, conservation laws, and geometrical methods. The SDEA III, held in honour of the Centenary of Noether’s Theorem, proven by the prominent German mathematician Emmy Noether, at Istanbul Technical University in August 2017 provided a productive forum for academic researchers, both junior and senior, and students to discuss and share the latest developments in the theory and applications of Lie symmetry groups. This work has an interdisciplinary appeal and will be a valuable read for researchers in mathematics, mechanics, physics, engineering, medicine and finance.
Symmetries and Semi-invariants in the Analysis of Nonlinear Systems
Author: Laura Menini
Publisher: Springer Science & Business Media
ISBN: 0857296124
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion. The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design.
Publisher: Springer Science & Business Media
ISBN: 0857296124
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion. The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design.
Applications of Lie Groups to Differential Equations
Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 1468402749
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.
Publisher: Springer Science & Business Media
ISBN: 1468402749
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.
Symmetry Methods for Differential Equations
Author: Peter Ellsworth Hydon
Publisher: Cambridge University Press
ISBN: 9780521497862
Category : Mathematics
Languages : en
Pages : 230
Book Description
This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.
Publisher: Cambridge University Press
ISBN: 9780521497862
Category : Mathematics
Languages : en
Pages : 230
Book Description
This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.
Symmetries and Integrability of Difference Equations
Author: Decio Levi
Publisher: Cambridge University Press
ISBN: 1139493841
Category : Mathematics
Languages : en
Pages : 361
Book Description
A comprehensive introduction to the subject suitable for graduate students and researchers. This book is also an up-to-date survey of the current state of the art and thus will serve as a valuable reference for specialists in the field.
Publisher: Cambridge University Press
ISBN: 1139493841
Category : Mathematics
Languages : en
Pages : 361
Book Description
A comprehensive introduction to the subject suitable for graduate students and researchers. This book is also an up-to-date survey of the current state of the art and thus will serve as a valuable reference for specialists in the field.
A Practical Guide to the Invariant Calculus
Author: Elizabeth Louise Mansfield
Publisher: Cambridge University Press
ISBN: 1139487043
Category : Mathematics
Languages : en
Pages : 261
Book Description
This book explains recent results in the theory of moving frames that concern the symbolic manipulation of invariants of Lie group actions. In particular, theorems concerning the calculation of generators of algebras of differential invariants, and the relations they satisfy, are discussed in detail. The author demonstrates how new ideas lead to significant progress in two main applications: the solution of invariant ordinary differential equations and the structure of Euler-Lagrange equations and conservation laws of variational problems. The expository language used here is primarily that of undergraduate calculus rather than differential geometry, making the topic more accessible to a student audience. More sophisticated ideas from differential topology and Lie theory are explained from scratch using illustrative examples and exercises. This book is ideal for graduate students and researchers working in differential equations, symbolic computation, applications of Lie groups and, to a lesser extent, differential geometry.
Publisher: Cambridge University Press
ISBN: 1139487043
Category : Mathematics
Languages : en
Pages : 261
Book Description
This book explains recent results in the theory of moving frames that concern the symbolic manipulation of invariants of Lie group actions. In particular, theorems concerning the calculation of generators of algebras of differential invariants, and the relations they satisfy, are discussed in detail. The author demonstrates how new ideas lead to significant progress in two main applications: the solution of invariant ordinary differential equations and the structure of Euler-Lagrange equations and conservation laws of variational problems. The expository language used here is primarily that of undergraduate calculus rather than differential geometry, making the topic more accessible to a student audience. More sophisticated ideas from differential topology and Lie theory are explained from scratch using illustrative examples and exercises. This book is ideal for graduate students and researchers working in differential equations, symbolic computation, applications of Lie groups and, to a lesser extent, differential geometry.
Symmetries and Overdetermined Systems of Partial Differential Equations
Author: Michael Eastwood
Publisher: Springer Science & Business Media
ISBN: 0387738312
Category : Mathematics
Languages : en
Pages : 565
Book Description
This three-week summer program considered the symmetries preserving various natural geometric structures. There are two parts to the proceedings. The articles in the first part are expository but all contain significant new material. The articles in the second part are concerned with original research. All articles were thoroughly refereed and the range of interrelated work ensures that this will be an extremely useful collection.
Publisher: Springer Science & Business Media
ISBN: 0387738312
Category : Mathematics
Languages : en
Pages : 565
Book Description
This three-week summer program considered the symmetries preserving various natural geometric structures. There are two parts to the proceedings. The articles in the first part are expository but all contain significant new material. The articles in the second part are concerned with original research. All articles were thoroughly refereed and the range of interrelated work ensures that this will be an extremely useful collection.
Symmetry And Perturbation Theory (Spt 2001), Proceedings Of The International Conference
Author: Dario Bambusi
Publisher: World Scientific
ISBN: 9814489727
Category : Science
Languages : en
Pages : 260
Book Description
The third conference on “Symmetry and Perturbation Theory” (SPT2001) was attended by over 50 mathematicians, physicists and chemists. The proceedings present the advancement of research in this field — more precisely, in the different fields at whose crossroads symmetry and perturbation theory sit.
Publisher: World Scientific
ISBN: 9814489727
Category : Science
Languages : en
Pages : 260
Book Description
The third conference on “Symmetry and Perturbation Theory” (SPT2001) was attended by over 50 mathematicians, physicists and chemists. The proceedings present the advancement of research in this field — more precisely, in the different fields at whose crossroads symmetry and perturbation theory sit.