Author: N Lakshminarayanaiah
Publisher: Elsevier
ISBN: 1483272168
Category : Science
Languages : en
Pages : 437
Book Description
Equations of Membrane Biophysics provides an introduction to the relevant principles of thermodynamics, kinetics, electricity, surface chemistry, electrochemistry, and other mathematical theorems so that the quantitative aspects of membrane phenomena in model and biological systems could be described. The book begins by introducing several phenomena that arise across membranes, both artificial and biological, when different driving forces act across them. This is followed by separate chapters on thermodynamic principles related to properties of dilute aqueous electrolyte solutions along with a review of the principles of electrostatics, electrochemical principles, Fick's laws of diffusion, and the rate theory of diffusion; the quantitative aspects of the electrochemistry of solutions and membranes, and the quantitative relations between charges and electrostatic potentials related to surfaces and interfaces; and membrane theories pertaining to electrical potentials arising across a variety of membranes. Subsequent chapters deal with steady-state thermodynamic approaches to several transport phenomena in membranes; tissue impedance, cable theory, and Hodgkin-Huxley equations; and fluctuation analysis of the electrical properties of the membrane.
Equations of Membrane Biophysics
Author: N Lakshminarayanaiah
Publisher: Elsevier
ISBN: 1483272168
Category : Science
Languages : en
Pages : 437
Book Description
Equations of Membrane Biophysics provides an introduction to the relevant principles of thermodynamics, kinetics, electricity, surface chemistry, electrochemistry, and other mathematical theorems so that the quantitative aspects of membrane phenomena in model and biological systems could be described. The book begins by introducing several phenomena that arise across membranes, both artificial and biological, when different driving forces act across them. This is followed by separate chapters on thermodynamic principles related to properties of dilute aqueous electrolyte solutions along with a review of the principles of electrostatics, electrochemical principles, Fick's laws of diffusion, and the rate theory of diffusion; the quantitative aspects of the electrochemistry of solutions and membranes, and the quantitative relations between charges and electrostatic potentials related to surfaces and interfaces; and membrane theories pertaining to electrical potentials arising across a variety of membranes. Subsequent chapters deal with steady-state thermodynamic approaches to several transport phenomena in membranes; tissue impedance, cable theory, and Hodgkin-Huxley equations; and fluctuation analysis of the electrical properties of the membrane.
Publisher: Elsevier
ISBN: 1483272168
Category : Science
Languages : en
Pages : 437
Book Description
Equations of Membrane Biophysics provides an introduction to the relevant principles of thermodynamics, kinetics, electricity, surface chemistry, electrochemistry, and other mathematical theorems so that the quantitative aspects of membrane phenomena in model and biological systems could be described. The book begins by introducing several phenomena that arise across membranes, both artificial and biological, when different driving forces act across them. This is followed by separate chapters on thermodynamic principles related to properties of dilute aqueous electrolyte solutions along with a review of the principles of electrostatics, electrochemical principles, Fick's laws of diffusion, and the rate theory of diffusion; the quantitative aspects of the electrochemistry of solutions and membranes, and the quantitative relations between charges and electrostatic potentials related to surfaces and interfaces; and membrane theories pertaining to electrical potentials arising across a variety of membranes. Subsequent chapters deal with steady-state thermodynamic approaches to several transport phenomena in membranes; tissue impedance, cable theory, and Hodgkin-Huxley equations; and fluctuation analysis of the electrical properties of the membrane.
Thermal Biophysics of Membranes
Author: Thomas Heimburg
Publisher: John Wiley & Sons
ISBN: 3527611606
Category : Science
Languages : en
Pages : 378
Book Description
An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade. The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity. Also included is a discussion of the application of computer simulations on membranes. For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.
Publisher: John Wiley & Sons
ISBN: 3527611606
Category : Science
Languages : en
Pages : 378
Book Description
An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade. The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity. Also included is a discussion of the application of computer simulations on membranes. For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.
Biophysics
Author: Patrick F. Dillon
Publisher: Cambridge University Press
ISBN: 1107001447
Category : Science
Languages : en
Pages : 315
Book Description
They are each directed toward the understanding of a biological principle, with a particular emphasis on human biology.
Publisher: Cambridge University Press
ISBN: 1107001447
Category : Science
Languages : en
Pages : 315
Book Description
They are each directed toward the understanding of a biological principle, with a particular emphasis on human biology.
The Biophysics of Cell Membranes
Author: Richard M. Epand
Publisher: Springer
ISBN: 9811062447
Category : Science
Languages : en
Pages : 224
Book Description
This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.
Publisher: Springer
ISBN: 9811062447
Category : Science
Languages : en
Pages : 224
Book Description
This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.
The Physical Chemistry of MEMBRANES
Author: B. Silver
Publisher: Springer Science & Business Media
ISBN: 9401096287
Category : Science
Languages : en
Pages : 413
Book Description
Ls book is an account of what physical chemistry h . . to say about the structural, electrical and transport properties of biological membranes and their simplest model-the lipid bilayer. The accent throughout is on basic ideas. In contrast to the essentially descriptive ap proach characteristic of texts on membrane biochemistry, our underlying themes are the role of force and entropy in maintaining membrane organization, in determining the electric fields and ionic environment of membranes, and in regulating the passage of molecules and ions across membranes. Although experimental findings will always be the touch stone against which theory will be tried, no attempt is made to present an exhaustive survey of experimental data. On the other hand, there is discussion of the nature and limitations of the results obtainable by the major laboratory techniques. The treatment is at the level of an advanced undergraduate course or an introductory survey suitable for post graduate students carrying out research in biochemistry, biophysics, or physiology. The mathematical demands on the reader are trivial. The few forbidding equations appearing in Chapter 7 are soon whittled away to simple practical expressions. Although the current-voltage characteristics of nerves are traditionally the province of biophysics rather than physical chemistry, certain aspects relevant to the electrical activity of nerves are nevertheless included in this text, namely, mem brane and diffusion potentials and conductivity fluctuations. Where rival theories exist, conflicting convictions have been presented, but not necessarily accorded equal approbation. The author has a viewpoint.
Publisher: Springer Science & Business Media
ISBN: 9401096287
Category : Science
Languages : en
Pages : 413
Book Description
Ls book is an account of what physical chemistry h . . to say about the structural, electrical and transport properties of biological membranes and their simplest model-the lipid bilayer. The accent throughout is on basic ideas. In contrast to the essentially descriptive ap proach characteristic of texts on membrane biochemistry, our underlying themes are the role of force and entropy in maintaining membrane organization, in determining the electric fields and ionic environment of membranes, and in regulating the passage of molecules and ions across membranes. Although experimental findings will always be the touch stone against which theory will be tried, no attempt is made to present an exhaustive survey of experimental data. On the other hand, there is discussion of the nature and limitations of the results obtainable by the major laboratory techniques. The treatment is at the level of an advanced undergraduate course or an introductory survey suitable for post graduate students carrying out research in biochemistry, biophysics, or physiology. The mathematical demands on the reader are trivial. The few forbidding equations appearing in Chapter 7 are soon whittled away to simple practical expressions. Although the current-voltage characteristics of nerves are traditionally the province of biophysics rather than physical chemistry, certain aspects relevant to the electrical activity of nerves are nevertheless included in this text, namely, mem brane and diffusion potentials and conductivity fluctuations. Where rival theories exist, conflicting convictions have been presented, but not necessarily accorded equal approbation. The author has a viewpoint.
Cellular Biophysics and Modeling
Author: Greg Conradi Smith
Publisher: Cambridge University Press
ISBN: 1107005361
Category : Mathematics
Languages : en
Pages : 395
Book Description
What every neuroscientist should know about the mathematical modeling of excitable cells, presented at an introductory level.
Publisher: Cambridge University Press
ISBN: 1107005361
Category : Mathematics
Languages : en
Pages : 395
Book Description
What every neuroscientist should know about the mathematical modeling of excitable cells, presented at an introductory level.
Introductory Biophysics
Author: James R. Claycomb
Publisher: Jones & Bartlett Learning
ISBN: 0763779989
Category : Medical
Languages : en
Pages : 375
Book Description
Designed for biology, physics, and medical students, Introductory Biophysics: Perspectives on the Living State, provides a comprehensive overview of the complex subject of biological physics. The companion CD-ROM, with MATLAB examples and the student version of QuickFieldTM, allows the student to perform biophysical simulations and modify the textbook example files. Included in the text are computer simulations of thermodynamics, astrobiology, the response of living cells to external fields, chaos in population dynamics, numerical models of evolution, electrical circuit models of cell suspension, gap junctions, and neuronal action potentials. With this text students will be able to perform biophysical simulations within hours. MATLAB examples include; the Hodgkin Huxley equations; the FitzHugh-Nagumo model of action potentials; fractal structures in biology; chaos in population dynamics; the cellular automaton model (the game of life); pattern formation in reaction-diffusion systems. QuickFieldTM tutorials and examples include; calculation of currents in biological tissue; cells under electrical stimulation; induced membrane potentials; heat transfer and analysis of stress in biomaterials.
Publisher: Jones & Bartlett Learning
ISBN: 0763779989
Category : Medical
Languages : en
Pages : 375
Book Description
Designed for biology, physics, and medical students, Introductory Biophysics: Perspectives on the Living State, provides a comprehensive overview of the complex subject of biological physics. The companion CD-ROM, with MATLAB examples and the student version of QuickFieldTM, allows the student to perform biophysical simulations and modify the textbook example files. Included in the text are computer simulations of thermodynamics, astrobiology, the response of living cells to external fields, chaos in population dynamics, numerical models of evolution, electrical circuit models of cell suspension, gap junctions, and neuronal action potentials. With this text students will be able to perform biophysical simulations within hours. MATLAB examples include; the Hodgkin Huxley equations; the FitzHugh-Nagumo model of action potentials; fractal structures in biology; chaos in population dynamics; the cellular automaton model (the game of life); pattern formation in reaction-diffusion systems. QuickFieldTM tutorials and examples include; calculation of currents in biological tissue; cells under electrical stimulation; induced membrane potentials; heat transfer and analysis of stress in biomaterials.
Surface Chemistry and Electrochemistry of Membranes
Author: Torben Smith Sorenson
Publisher: CRC Press
ISBN: 9780824719227
Category : Science
Languages : en
Pages : 1046
Book Description
An eclectic mix of studies on chemical and electrochemical behaviour of membrane surfaces. The book looks at membranes - both organic and inorganic - from a host of different perspectives and in the context of many diverse disciplines. It explores the behaviours of both synthetic and biological membranes, employing physical, chemical and physiochemical perspectives, and blends state-of-the-art research of many disciplines into a coherent whole.
Publisher: CRC Press
ISBN: 9780824719227
Category : Science
Languages : en
Pages : 1046
Book Description
An eclectic mix of studies on chemical and electrochemical behaviour of membrane surfaces. The book looks at membranes - both organic and inorganic - from a host of different perspectives and in the context of many diverse disciplines. It explores the behaviours of both synthetic and biological membranes, employing physical, chemical and physiochemical perspectives, and blends state-of-the-art research of many disciplines into a coherent whole.
Introduction to Cellular Biophysics, Volume 2
Author: Armin Kargol
Publisher: Morgan & Claypool Publishers
ISBN: 1643277561
Category : Science
Languages : en
Pages : 107
Book Description
All living matter is comprised of cells, small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are single-cell, where all life functions are performed by that cell. Others have groups of cells, or organs, specializing in one particular function. The survival of the entire organism depends on all of its cells and organs fulfilling their roles. While the cells are studied by different sciences, they are seen differently by biologists, chemists, or physicists. Biologists concentrate their attention on cell structure and function. What the cells consists of? Where are its organelles? What function each organelle fulfils? From a chemists’ point of view, a cell is a complex chemical reaction chamber where various molecules are synthesized or degraded. The main question is how these, sometimes very complicated chains of reactions are controlled. Finally, from a physics standpoint, some of the fundamental questions are about the physical movement of all these molecules between organelles within the cell, their exchange with the extracellular medium, as well as electrical phenomena resulting from such transport. The aim of this book is to look into the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and various electrical effects, and that in turn leads to biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goals of every cell are to stay alive and to fulfill its function as a part of a larger organ or organism. The first volume of this book is an inventory of physical transport processes occurring in cells while this second volume provides a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
Publisher: Morgan & Claypool Publishers
ISBN: 1643277561
Category : Science
Languages : en
Pages : 107
Book Description
All living matter is comprised of cells, small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are single-cell, where all life functions are performed by that cell. Others have groups of cells, or organs, specializing in one particular function. The survival of the entire organism depends on all of its cells and organs fulfilling their roles. While the cells are studied by different sciences, they are seen differently by biologists, chemists, or physicists. Biologists concentrate their attention on cell structure and function. What the cells consists of? Where are its organelles? What function each organelle fulfils? From a chemists’ point of view, a cell is a complex chemical reaction chamber where various molecules are synthesized or degraded. The main question is how these, sometimes very complicated chains of reactions are controlled. Finally, from a physics standpoint, some of the fundamental questions are about the physical movement of all these molecules between organelles within the cell, their exchange with the extracellular medium, as well as electrical phenomena resulting from such transport. The aim of this book is to look into the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and various electrical effects, and that in turn leads to biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goals of every cell are to stay alive and to fulfill its function as a part of a larger organ or organism. The first volume of this book is an inventory of physical transport processes occurring in cells while this second volume provides a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
Membranes, Ions, and Impulses
Author: Kenneth Stewart Cole
Publisher: Berkeley : University of California Press
ISBN:
Category : Cell membranes
Languages : en
Pages : 594
Book Description
Publisher: Berkeley : University of California Press
ISBN:
Category : Cell membranes
Languages : en
Pages : 594
Book Description