Author: Jeremy J. Gray
Publisher: American Mathematical Soc.
ISBN: 0821869043
Category : Mathematics
Languages : en
Pages : 346
Book Description
Algebra, as a subdiscipline of mathematics, arguably has a history going back some 4000 years to ancient Mesopotamia. The history, however, of what is recognized today as high school algebra is much shorter, extending back to the sixteenth century, while the history of what practicing mathematicians call "modern algebra" is even shorter still. The present volume provides a glimpse into the complicated and often convoluted history of this latter conception of algebra by juxtaposing twelve episodes in the evolution of modern algebra from the early nineteenth-century work of Charles Babbage on functional equations to Alexandre Grothendieck's mid-twentieth-century metaphor of a ``rising sea'' in his categorical approach to algebraic geometry. In addition to considering the technical development of various aspects of algebraic thought, the historians of modern algebra whose work is united in this volume explore such themes as the changing aims and organization of the subject as well as the often complex lines of mathematical communication within and across national boundaries. Among the specific algebraic ideas considered are the concept of divisibility and the introduction of non-commutative algebras into the study of number theory and the emergence of algebraic geometry in the twentieth century. The resulting volume is essential reading for anyone interested in the history of modern mathematics in general and modern algebra in particular. It will be of particular interest to mathematicians and historians of mathematics.
Episodes in the History of Modern Algebra (1800-1950)
Author: Jeremy J. Gray
Publisher: American Mathematical Soc.
ISBN: 0821869043
Category : Mathematics
Languages : en
Pages : 346
Book Description
Algebra, as a subdiscipline of mathematics, arguably has a history going back some 4000 years to ancient Mesopotamia. The history, however, of what is recognized today as high school algebra is much shorter, extending back to the sixteenth century, while the history of what practicing mathematicians call "modern algebra" is even shorter still. The present volume provides a glimpse into the complicated and often convoluted history of this latter conception of algebra by juxtaposing twelve episodes in the evolution of modern algebra from the early nineteenth-century work of Charles Babbage on functional equations to Alexandre Grothendieck's mid-twentieth-century metaphor of a ``rising sea'' in his categorical approach to algebraic geometry. In addition to considering the technical development of various aspects of algebraic thought, the historians of modern algebra whose work is united in this volume explore such themes as the changing aims and organization of the subject as well as the often complex lines of mathematical communication within and across national boundaries. Among the specific algebraic ideas considered are the concept of divisibility and the introduction of non-commutative algebras into the study of number theory and the emergence of algebraic geometry in the twentieth century. The resulting volume is essential reading for anyone interested in the history of modern mathematics in general and modern algebra in particular. It will be of particular interest to mathematicians and historians of mathematics.
Publisher: American Mathematical Soc.
ISBN: 0821869043
Category : Mathematics
Languages : en
Pages : 346
Book Description
Algebra, as a subdiscipline of mathematics, arguably has a history going back some 4000 years to ancient Mesopotamia. The history, however, of what is recognized today as high school algebra is much shorter, extending back to the sixteenth century, while the history of what practicing mathematicians call "modern algebra" is even shorter still. The present volume provides a glimpse into the complicated and often convoluted history of this latter conception of algebra by juxtaposing twelve episodes in the evolution of modern algebra from the early nineteenth-century work of Charles Babbage on functional equations to Alexandre Grothendieck's mid-twentieth-century metaphor of a ``rising sea'' in his categorical approach to algebraic geometry. In addition to considering the technical development of various aspects of algebraic thought, the historians of modern algebra whose work is united in this volume explore such themes as the changing aims and organization of the subject as well as the often complex lines of mathematical communication within and across national boundaries. Among the specific algebraic ideas considered are the concept of divisibility and the introduction of non-commutative algebras into the study of number theory and the emergence of algebraic geometry in the twentieth century. The resulting volume is essential reading for anyone interested in the history of modern mathematics in general and modern algebra in particular. It will be of particular interest to mathematicians and historians of mathematics.
A Guide to Groups, Rings, and Fields
Author: Fernando Q. Gouvêa
Publisher: MAA
ISBN: 0883853558
Category : Mathematics
Languages : en
Pages : 329
Book Description
Insightful overview of many kinds of algebraic structures that are ubiquitous in mathematics. For researchers at graduate level and beyond.
Publisher: MAA
ISBN: 0883853558
Category : Mathematics
Languages : en
Pages : 329
Book Description
Insightful overview of many kinds of algebraic structures that are ubiquitous in mathematics. For researchers at graduate level and beyond.
Pioneering Women in American Mathematics
Author: Judy Green
Publisher: American Mathematical Soc.
ISBN: 0821843761
Category : Biography & Autobiography
Languages : en
Pages : 371
Book Description
"This book is the result of a study in which the authors identified all of the American women who earned PhD's in mathematics before 1940, and collected extensive biographical and bibliographical information about each of them. By reconstructing as complete a picture as possible of this group of women, Green and LaDuke reveal insights into the larger scientific and cultural communities in which they lived and worked." "The book contains an extended introductory essay, as well as biographical entries for each of the 228 women in the study. The authors examine family backgrounds, education, careers, and other professional activities. They show that there were many more women earning PhD's in mathematics before 1940 than is commonly thought." "The material will be of interest to researchers, teachers, and students in mathematics, history of mathematics, history of science, women's studies, and sociology."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 0821843761
Category : Biography & Autobiography
Languages : en
Pages : 371
Book Description
"This book is the result of a study in which the authors identified all of the American women who earned PhD's in mathematics before 1940, and collected extensive biographical and bibliographical information about each of them. By reconstructing as complete a picture as possible of this group of women, Green and LaDuke reveal insights into the larger scientific and cultural communities in which they lived and worked." "The book contains an extended introductory essay, as well as biographical entries for each of the 228 women in the study. The authors examine family backgrounds, education, careers, and other professional activities. They show that there were many more women earning PhD's in mathematics before 1940 than is commonly thought." "The material will be of interest to researchers, teachers, and students in mathematics, history of mathematics, history of science, women's studies, and sociology."--BOOK JACKET.
Framing Global Mathematics
Author: Norbert Schappacher
Publisher: Springer Nature
ISBN: 3030956830
Category : Mathematics
Languages : en
Pages : 20
Book Description
This open access book is about the shaping of international relations in mathematics over the last two hundred years. It focusses on institutions and organizations that were created to frame the international dimension of mathematical research. Today, striking evidence of globalized mathematics is provided by countless international meetings and the worldwide repository ArXiv. The text follows the sinuous path that was taken to reach this state, from the long nineteenth century, through the two wars, to the present day. International cooperation in mathematics was well established by 1900, centered in Europe. The first International Mathematical Union, IMU, founded in 1920 and disbanded in 1932, reflected above all the trauma of WW I. Since 1950 the current IMU has played an increasing role in defining mathematical excellence, as is shown both in the historical narrative and by analyzing data about the International Congresses of Mathematicians. For each of the three periods discussed, interactions are explored between world politics, the advancement of scientific infrastructures, and the inner evolution of mathematics. Readers will thus take a new look at the place of mathematics in world culture, and how international organizations can make a difference. Aimed at mathematicians, historians of science, scientists, and the scientifically inclined general public, the book will be valuable to anyone interested in the history of science on an international level.
Publisher: Springer Nature
ISBN: 3030956830
Category : Mathematics
Languages : en
Pages : 20
Book Description
This open access book is about the shaping of international relations in mathematics over the last two hundred years. It focusses on institutions and organizations that were created to frame the international dimension of mathematical research. Today, striking evidence of globalized mathematics is provided by countless international meetings and the worldwide repository ArXiv. The text follows the sinuous path that was taken to reach this state, from the long nineteenth century, through the two wars, to the present day. International cooperation in mathematics was well established by 1900, centered in Europe. The first International Mathematical Union, IMU, founded in 1920 and disbanded in 1932, reflected above all the trauma of WW I. Since 1950 the current IMU has played an increasing role in defining mathematical excellence, as is shown both in the historical narrative and by analyzing data about the International Congresses of Mathematicians. For each of the three periods discussed, interactions are explored between world politics, the advancement of scientific infrastructures, and the inner evolution of mathematics. Readers will thus take a new look at the place of mathematics in world culture, and how international organizations can make a difference. Aimed at mathematicians, historians of science, scientists, and the scientifically inclined general public, the book will be valuable to anyone interested in the history of science on an international level.
Series and Products in the Development of Mathematics: Volume 1
Author: Ranjan Roy
Publisher: Cambridge University Press
ISBN: 1108573185
Category : Mathematics
Languages : en
Pages : 780
Book Description
This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.
Publisher: Cambridge University Press
ISBN: 1108573185
Category : Mathematics
Languages : en
Pages : 780
Book Description
This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.
Series and Products in the Development of Mathematics
Author: Ranjan Roy
Publisher: Cambridge University Press
ISBN: 1108709370
Category : Mathematics
Languages : en
Pages : 479
Book Description
"Sources in the Development of Mathematics: Series and Products from the Fifteenth to the Twenty-first Century, my book of 2011, was intended for an audience of graduate students or beyond. However, since much of its mathematics lies at the foundations of the undergraduate mathematics curriculum, I decided to use portions of my book as the text for an advanced undergraduate course. I was very pleased to find that my curious and diligent students, of varied levels of mathematical talent, could understand a good bit of the material and get insight into mathematics they had already studied as well as topics with which they were unfamiliar. Of course, the students could profitably study such topics from good textbooks. But I observed that when they read original proofs, perhaps with gaps or with slightly opaque arguments, students gained very valuable insight into the process of mathematical thinking and intuition. Moreover, the study of the steps, often over long periods of time, by which earlier mathematicians refined and clarified their arguments revealed to my students the essential points at the crux of those results, points that may be more difficult to discern in later streamlined presentations. As they worked to understand the material, my students witnessed the difficulty and beauty of original mathematical work and this was a source of great enjoyment to many of them. I have now thrice taught this course, with extremely positive student response"--
Publisher: Cambridge University Press
ISBN: 1108709370
Category : Mathematics
Languages : en
Pages : 479
Book Description
"Sources in the Development of Mathematics: Series and Products from the Fifteenth to the Twenty-first Century, my book of 2011, was intended for an audience of graduate students or beyond. However, since much of its mathematics lies at the foundations of the undergraduate mathematics curriculum, I decided to use portions of my book as the text for an advanced undergraduate course. I was very pleased to find that my curious and diligent students, of varied levels of mathematical talent, could understand a good bit of the material and get insight into mathematics they had already studied as well as topics with which they were unfamiliar. Of course, the students could profitably study such topics from good textbooks. But I observed that when they read original proofs, perhaps with gaps or with slightly opaque arguments, students gained very valuable insight into the process of mathematical thinking and intuition. Moreover, the study of the steps, often over long periods of time, by which earlier mathematicians refined and clarified their arguments revealed to my students the essential points at the crux of those results, points that may be more difficult to discern in later streamlined presentations. As they worked to understand the material, my students witnessed the difficulty and beauty of original mathematical work and this was a source of great enjoyment to many of them. I have now thrice taught this course, with extremely positive student response"--
Series and Products in the Development of Mathematics: Volume 2
Author: Ranjan Roy
Publisher: Cambridge University Press
ISBN: 1108573150
Category : Mathematics
Languages : en
Pages : 480
Book Description
This is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 examines more recent results, including deBranges' resolution of Bieberbach's conjecture and Nevanlinna's theory of meromorphic functions.
Publisher: Cambridge University Press
ISBN: 1108573150
Category : Mathematics
Languages : en
Pages : 480
Book Description
This is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 examines more recent results, including deBranges' resolution of Bieberbach's conjecture and Nevanlinna's theory of meromorphic functions.
The Riemann Hypothesis in Characteristic p in Historical Perspective
Author: Peter Roquette
Publisher: Springer
ISBN: 3319990675
Category : Mathematics
Languages : en
Pages : 239
Book Description
This book tells the story of the Riemann hypothesis for function fields (or curves) starting with Artin's 1921 thesis, covering Hasse's work in the 1930s on elliptic fields and more, and concluding with Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time, found in various archives, mostly the University Library in Göttingen. The aim is to show how the ideas formed, and how the proper notions and proofs were found, providing a particularly well-documented illustration of how mathematics develops in general. The book is written for mathematicians, but it does not require any special knowledge of particular mathematical fields.
Publisher: Springer
ISBN: 3319990675
Category : Mathematics
Languages : en
Pages : 239
Book Description
This book tells the story of the Riemann hypothesis for function fields (or curves) starting with Artin's 1921 thesis, covering Hasse's work in the 1930s on elliptic fields and more, and concluding with Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time, found in various archives, mostly the University Library in Göttingen. The aim is to show how the ideas formed, and how the proper notions and proofs were found, providing a particularly well-documented illustration of how mathematics develops in general. The book is written for mathematicians, but it does not require any special knowledge of particular mathematical fields.
Mathematical Correspondences and Critical Editions
Author: Maria Teresa Borgato
Publisher: Birkhäuser
ISBN: 3319735772
Category : Mathematics
Languages : en
Pages : 361
Book Description
Mathematical correspondence offers a rich heritage for the history of mathematics and science, as well as cultural history and other areas. It naturally covers a vast range of topics, and not only of a scientific nature; it includes letters between mathematicians, but also between mathematicians and politicians, publishers, and men or women of culture. Wallis, Leibniz, the Bernoullis, D'Alembert, Condorcet, Lagrange, Gauss, Hermite, Betti, Cremona, Poincaré and van der Waerden are undoubtedly authors of great interest and their letters are valuable documents, but the correspondence of less well-known authors, too, can often make an equally important contribution to our understanding of developments in the history of science. Mathematical correspondences also play an important role in the editions of collected works, contributing to the reconstruction of scientific biographies, as well as the genesis of scientific ideas, and in the correct dating and interpretation of scientific writings. This volume is based on the symposium “Mathematical Correspondences and Critical Editions,” held at the 6th International Conference of the ESHS in Lisbon, Portugal in 2014. In the context of the more than fifteen major and minor editions of mathematical correspondences and collected works presented in detail, the volume discusses issues such as • History and prospects of past and ongoing edition projects, • Critical aspects of past editions, • The complementary role of printed and digital editions, • Integral and partial editions of correspondence, • Reproduction techniques for manuscripts, images and formulae, and the editorial challenges and opportunities presented by digital technology.
Publisher: Birkhäuser
ISBN: 3319735772
Category : Mathematics
Languages : en
Pages : 361
Book Description
Mathematical correspondence offers a rich heritage for the history of mathematics and science, as well as cultural history and other areas. It naturally covers a vast range of topics, and not only of a scientific nature; it includes letters between mathematicians, but also between mathematicians and politicians, publishers, and men or women of culture. Wallis, Leibniz, the Bernoullis, D'Alembert, Condorcet, Lagrange, Gauss, Hermite, Betti, Cremona, Poincaré and van der Waerden are undoubtedly authors of great interest and their letters are valuable documents, but the correspondence of less well-known authors, too, can often make an equally important contribution to our understanding of developments in the history of science. Mathematical correspondences also play an important role in the editions of collected works, contributing to the reconstruction of scientific biographies, as well as the genesis of scientific ideas, and in the correct dating and interpretation of scientific writings. This volume is based on the symposium “Mathematical Correspondences and Critical Editions,” held at the 6th International Conference of the ESHS in Lisbon, Portugal in 2014. In the context of the more than fifteen major and minor editions of mathematical correspondences and collected works presented in detail, the volume discusses issues such as • History and prospects of past and ongoing edition projects, • Critical aspects of past editions, • The complementary role of printed and digital editions, • Integral and partial editions of correspondence, • Reproduction techniques for manuscripts, images and formulae, and the editorial challenges and opportunities presented by digital technology.
Max Dehn
Author: Jemma Lorenat
Publisher: American Mathematical Society
ISBN: 1470461064
Category : Mathematics
Languages : en
Pages : 292
Book Description
Max Dehn (1878?1952) is known to mathematicians today for his seminal contributions to geometry and topology?Dehn surgery, Dehn twists, the Dehn invariant, etc. He is also remembered as the first mathematician to solve one of Hilbert?s famous problems. However, Dehn's influence as a scholar and teacher extended far beyond his mathematics. Dehn also lived a remarkable life, described in this book in three phases. The first phase focuses on his early career as one of David Hilbert?s most gifted students. The second, after World War I, treats his time in Frankfurt where he led an intimate community of mathematicians in explorations of historical texts. The final phase, after 1938, concerns his flight from Nazi Germany to Scandinavia and eventually to the United States where, after various teaching experiences, the Dehns settled at iconic Black Mountain College. This book is a collection of essays written by mathematicians and historians of art and science. It treats Dehn?s mathematics and its influence, his journeys, and his remarkable engagement in history and the arts. A great deal of the information found in this book has never before been published.
Publisher: American Mathematical Society
ISBN: 1470461064
Category : Mathematics
Languages : en
Pages : 292
Book Description
Max Dehn (1878?1952) is known to mathematicians today for his seminal contributions to geometry and topology?Dehn surgery, Dehn twists, the Dehn invariant, etc. He is also remembered as the first mathematician to solve one of Hilbert?s famous problems. However, Dehn's influence as a scholar and teacher extended far beyond his mathematics. Dehn also lived a remarkable life, described in this book in three phases. The first phase focuses on his early career as one of David Hilbert?s most gifted students. The second, after World War I, treats his time in Frankfurt where he led an intimate community of mathematicians in explorations of historical texts. The final phase, after 1938, concerns his flight from Nazi Germany to Scandinavia and eventually to the United States where, after various teaching experiences, the Dehns settled at iconic Black Mountain College. This book is a collection of essays written by mathematicians and historians of art and science. It treats Dehn?s mathematics and its influence, his journeys, and his remarkable engagement in history and the arts. A great deal of the information found in this book has never before been published.