Author: Azamal Husen
Publisher: Academic Press
ISBN: 0323998240
Category : Science
Languages : en
Pages : 522
Book Description
Environmental, Physiological and Chemical Controls of Adventitious Rooting in Cuttings provides a review of the environmental, physiological and chemical controls of adventitious rooting in cuttings obtained from plants. In plants, adventitious roots, which are highly useful for vegetative propagation (or clonal propagation) are produced mainly from leaves, hypocotyls, stems or shoots. Vegetative propagation may occur naturally by using propagules such as roots, underground and aerial stems, leaves, buds and bulbils. It may also be done artificially through regenerative organs (rhizomes, bulbs, and corms) and by utilizing specialized methods, like cutting, grafting and layering. This book covers the latest tactics surrounding these processes. As a plethora of factors affect the adventitious rooting of cuttings, adding to the complexity of the phenomenon. The main factors which control adventitious root formation are types of cuttings, presence of leaf area on cuttings, types of hormones and their concentration, duration of hormonal treatment (quick dip, long soak, dry dip, spray dip, or total immerse method), maturation (juvenile or mature), genotype, explant position, and more, all of which are discussed here. - Provides a comprehensive and exclusive book on the environmental, physiological and chemical factors associated with adventitious root formation in cutting, with up-to-date literature and lucid illustrations - Presents a multidimensional approach and a broad range of explanation on adventitious root formation associated with mature and juvenile cutting - Discusses a number of molecular, histological and physiological markers associated with adventitious root formation in numerous plant species - Elaborates on how external and internal factors control the cell/tissue initiation, differentiation and overall adventitious root formation in cutting
Environmental, Physiological and Chemical Controls of Adventitious Rooting in Cuttings
Author: Azamal Husen
Publisher: Academic Press
ISBN: 0323998240
Category : Science
Languages : en
Pages : 522
Book Description
Environmental, Physiological and Chemical Controls of Adventitious Rooting in Cuttings provides a review of the environmental, physiological and chemical controls of adventitious rooting in cuttings obtained from plants. In plants, adventitious roots, which are highly useful for vegetative propagation (or clonal propagation) are produced mainly from leaves, hypocotyls, stems or shoots. Vegetative propagation may occur naturally by using propagules such as roots, underground and aerial stems, leaves, buds and bulbils. It may also be done artificially through regenerative organs (rhizomes, bulbs, and corms) and by utilizing specialized methods, like cutting, grafting and layering. This book covers the latest tactics surrounding these processes. As a plethora of factors affect the adventitious rooting of cuttings, adding to the complexity of the phenomenon. The main factors which control adventitious root formation are types of cuttings, presence of leaf area on cuttings, types of hormones and their concentration, duration of hormonal treatment (quick dip, long soak, dry dip, spray dip, or total immerse method), maturation (juvenile or mature), genotype, explant position, and more, all of which are discussed here. - Provides a comprehensive and exclusive book on the environmental, physiological and chemical factors associated with adventitious root formation in cutting, with up-to-date literature and lucid illustrations - Presents a multidimensional approach and a broad range of explanation on adventitious root formation associated with mature and juvenile cutting - Discusses a number of molecular, histological and physiological markers associated with adventitious root formation in numerous plant species - Elaborates on how external and internal factors control the cell/tissue initiation, differentiation and overall adventitious root formation in cutting
Publisher: Academic Press
ISBN: 0323998240
Category : Science
Languages : en
Pages : 522
Book Description
Environmental, Physiological and Chemical Controls of Adventitious Rooting in Cuttings provides a review of the environmental, physiological and chemical controls of adventitious rooting in cuttings obtained from plants. In plants, adventitious roots, which are highly useful for vegetative propagation (or clonal propagation) are produced mainly from leaves, hypocotyls, stems or shoots. Vegetative propagation may occur naturally by using propagules such as roots, underground and aerial stems, leaves, buds and bulbils. It may also be done artificially through regenerative organs (rhizomes, bulbs, and corms) and by utilizing specialized methods, like cutting, grafting and layering. This book covers the latest tactics surrounding these processes. As a plethora of factors affect the adventitious rooting of cuttings, adding to the complexity of the phenomenon. The main factors which control adventitious root formation are types of cuttings, presence of leaf area on cuttings, types of hormones and their concentration, duration of hormonal treatment (quick dip, long soak, dry dip, spray dip, or total immerse method), maturation (juvenile or mature), genotype, explant position, and more, all of which are discussed here. - Provides a comprehensive and exclusive book on the environmental, physiological and chemical factors associated with adventitious root formation in cutting, with up-to-date literature and lucid illustrations - Presents a multidimensional approach and a broad range of explanation on adventitious root formation associated with mature and juvenile cutting - Discusses a number of molecular, histological and physiological markers associated with adventitious root formation in numerous plant species - Elaborates on how external and internal factors control the cell/tissue initiation, differentiation and overall adventitious root formation in cutting
Biology of Adventitious Root Formation
Author: Tim D. Davis
Publisher: Springer Science & Business Media
ISBN: 1475794924
Category : Science
Languages : en
Pages : 344
Book Description
Charles E. Hess Department of Environmental Horticulture University of California Davis, CA 95616 Research in the biology of adventitious root formation has a special place in science. It provides an excellent forum in which to pursue fundamental research on the regulation of plant growth and development. At the same time the results of the research have been quickly applied by commercial plant propagators, agronomists, foresters and horticulturists (see the chapter by Kovar and Kuchenbuch, by Ritchie, and by Davies and coworkers in this volume). In an era when there is great interest in speeding technology transfer, the experiences gained in research in adventitious root formation may provide useful examples for other areas of science. Interaction between the fundamental and the applied have been and continue to be facilitated by the establishment, in 1951, of the Plant Propagators' Society, which has evolved into the International Plant Propagators' Society, with active programs in six regions around the world. It is a unique organization which brings together researchers in universities, botanical gardens and arboreta, and commercial plant propagators. In this synergistic environment new knowledge is rapidly transferred and new ideas for fundamental research evolve from the presentations and discussions by experienced plant propagators. In the past 50 years, based on research related to the biology of adventitious root formation, advances in plant propagation have been made on two major fronts.
Publisher: Springer Science & Business Media
ISBN: 1475794924
Category : Science
Languages : en
Pages : 344
Book Description
Charles E. Hess Department of Environmental Horticulture University of California Davis, CA 95616 Research in the biology of adventitious root formation has a special place in science. It provides an excellent forum in which to pursue fundamental research on the regulation of plant growth and development. At the same time the results of the research have been quickly applied by commercial plant propagators, agronomists, foresters and horticulturists (see the chapter by Kovar and Kuchenbuch, by Ritchie, and by Davies and coworkers in this volume). In an era when there is great interest in speeding technology transfer, the experiences gained in research in adventitious root formation may provide useful examples for other areas of science. Interaction between the fundamental and the applied have been and continue to be facilitated by the establishment, in 1951, of the Plant Propagators' Society, which has evolved into the International Plant Propagators' Society, with active programs in six regions around the world. It is a unique organization which brings together researchers in universities, botanical gardens and arboreta, and commercial plant propagators. In this synergistic environment new knowledge is rapidly transferred and new ideas for fundamental research evolve from the presentations and discussions by experienced plant propagators. In the past 50 years, based on research related to the biology of adventitious root formation, advances in plant propagation have been made on two major fronts.
Antimalarial Medicinal Plants
Author: Azamal Husen
Publisher: CRC Press
ISBN: 1003857639
Category : Science
Languages : en
Pages : 477
Book Description
Malaria continues to affect a large population of the world, especially in third world countries. The spread of drug-resistant parasites demonstrates the need for antimalarial agents with various modes of action. The search for remedies derived from medicinal plants for the treatment of malaria is reliant on accurate ethnobotanical and ethnopharmacological information obtained from traditional medical practitioners. Antimalarial Medicinal Plants provides information on bioactive compounds and therapeutic potentials of several antimalarial plant species found around the globe. This book evaluates these plant species with respect to their biology, diversity, distribution, and pharmacological values. A volume in the Exploring Medicinal Plants series, this book highlights trends, technologies, processes, and services important to and necessary for efficient production, use, and understanding of medicinal qualities of antimalarial plants. It critically examines claims made by traditional medical practitioners with scientific validations for safe herbal drug formulation. It is a reference work for researchers of herbal medicine, traditional healers, pharmacists, and students associated with plant sciences and economic botany.
Publisher: CRC Press
ISBN: 1003857639
Category : Science
Languages : en
Pages : 477
Book Description
Malaria continues to affect a large population of the world, especially in third world countries. The spread of drug-resistant parasites demonstrates the need for antimalarial agents with various modes of action. The search for remedies derived from medicinal plants for the treatment of malaria is reliant on accurate ethnobotanical and ethnopharmacological information obtained from traditional medical practitioners. Antimalarial Medicinal Plants provides information on bioactive compounds and therapeutic potentials of several antimalarial plant species found around the globe. This book evaluates these plant species with respect to their biology, diversity, distribution, and pharmacological values. A volume in the Exploring Medicinal Plants series, this book highlights trends, technologies, processes, and services important to and necessary for efficient production, use, and understanding of medicinal qualities of antimalarial plants. It critically examines claims made by traditional medical practitioners with scientific validations for safe herbal drug formulation. It is a reference work for researchers of herbal medicine, traditional healers, pharmacists, and students associated with plant sciences and economic botany.
Biostimulants in Plant Protection and Performance
Author: Azamal Husen
Publisher: Elsevier
ISBN: 0443158851
Category : Science
Languages : en
Pages : 424
Book Description
Biostimulants (a diverse class of compounds including substances or microorganisms) are helpful in sustainable plants growth and development. They accelerate plant growth, yield, and chemical composition even under unfavorable conditions. The main biostimulants are nitrogen-containing compounds, humic materials, some specific compounds released by microbes, plants, and animals, various seaweed extracts, bio-based nanomaterials, phosphite, silicon, and so on. Additionally, new generation products and bioproducts are being developed for sustainable plant growth and protection. Some research works in the area of biotechnology and nanobiotechnology have shown improved sustainable plant growth and production. The protective roles of biostimulants are varied depends on the compound and plant species. Exposure of biostimulants have shown accelerated plants growth and developmental processes for instance, manage stomatal conductance and rate of transpiration, and increase rate of photosynthesis etc. They also increased crop plants immune systems against the adverse situation. Thus, use of innovations of new generation biostimulants also enhance plant production systems, through a significant reduction of synthetic chemicals such as pesticides and fertilizers. Moreover, bioinoculants commercial products obtained from seaweed extract, humic acids, amino acids, fulvic acids, and some microbial inoculants have shown their potential role in adventitious root induction in plants. Microbial inoculants or microbial-based biostimulants, as a promising and eco-friendly technology, can be widely used to address environmental concerns and fulfill the need for developing sustainable or modern agriculture practices. They have great potential to elicit plant tolerance to various climate change-related stresses and thus enhance plant growth and overall performance-related features. However, for successful implementation biostimulants-based agriculture in the field under changing climate conditions, an understanding of plant functions and biostimulants interaction or action mechanisms coping with various abiotic as well as biotic stresses at the physicochemical, metabolic, and molecular levels is required. Mycorrhizae are beneficial fungi that form symbiotic associations with plants and aid in plant development, disease resistance, and soil health is well established. Similarly, phyllospheric microbiome are known to possess different plant growth promotion attributes like nitrogen fixation, phosphate solubilization, biocontrol activity, and increase plant resistance towards abiotic stresses. The plant growth promotion traits possessed by these phyllospheric microbiota can be judiciously harbored for phyllospheric and rhizospheric engineering. The engineered phyllospheric and rhizospheric microbiome can increase the plant growth and productivity, thereby, can act as a driving force for increasing the agricultural production in a sustainable manner. Taken together, this book aims to contribute to the recent understanding associated with the various role and application of biostimulants on different plant for their sustainable growth and management. - Discusses our current understanding of, and advances in, biostimulants, along with their application in plants growth performance and overall management - Explores new techniques, new generation products, and bioproducts - Highlights the role of seaweed extract, humic acids, protein hydrolysates, amino acids, melatonin, paramylon, fulvic acids, microbial inoculants (phyllospheric and rhizospheric), and more
Publisher: Elsevier
ISBN: 0443158851
Category : Science
Languages : en
Pages : 424
Book Description
Biostimulants (a diverse class of compounds including substances or microorganisms) are helpful in sustainable plants growth and development. They accelerate plant growth, yield, and chemical composition even under unfavorable conditions. The main biostimulants are nitrogen-containing compounds, humic materials, some specific compounds released by microbes, plants, and animals, various seaweed extracts, bio-based nanomaterials, phosphite, silicon, and so on. Additionally, new generation products and bioproducts are being developed for sustainable plant growth and protection. Some research works in the area of biotechnology and nanobiotechnology have shown improved sustainable plant growth and production. The protective roles of biostimulants are varied depends on the compound and plant species. Exposure of biostimulants have shown accelerated plants growth and developmental processes for instance, manage stomatal conductance and rate of transpiration, and increase rate of photosynthesis etc. They also increased crop plants immune systems against the adverse situation. Thus, use of innovations of new generation biostimulants also enhance plant production systems, through a significant reduction of synthetic chemicals such as pesticides and fertilizers. Moreover, bioinoculants commercial products obtained from seaweed extract, humic acids, amino acids, fulvic acids, and some microbial inoculants have shown their potential role in adventitious root induction in plants. Microbial inoculants or microbial-based biostimulants, as a promising and eco-friendly technology, can be widely used to address environmental concerns and fulfill the need for developing sustainable or modern agriculture practices. They have great potential to elicit plant tolerance to various climate change-related stresses and thus enhance plant growth and overall performance-related features. However, for successful implementation biostimulants-based agriculture in the field under changing climate conditions, an understanding of plant functions and biostimulants interaction or action mechanisms coping with various abiotic as well as biotic stresses at the physicochemical, metabolic, and molecular levels is required. Mycorrhizae are beneficial fungi that form symbiotic associations with plants and aid in plant development, disease resistance, and soil health is well established. Similarly, phyllospheric microbiome are known to possess different plant growth promotion attributes like nitrogen fixation, phosphate solubilization, biocontrol activity, and increase plant resistance towards abiotic stresses. The plant growth promotion traits possessed by these phyllospheric microbiota can be judiciously harbored for phyllospheric and rhizospheric engineering. The engineered phyllospheric and rhizospheric microbiome can increase the plant growth and productivity, thereby, can act as a driving force for increasing the agricultural production in a sustainable manner. Taken together, this book aims to contribute to the recent understanding associated with the various role and application of biostimulants on different plant for their sustainable growth and management. - Discusses our current understanding of, and advances in, biostimulants, along with their application in plants growth performance and overall management - Explores new techniques, new generation products, and bioproducts - Highlights the role of seaweed extract, humic acids, protein hydrolysates, amino acids, melatonin, paramylon, fulvic acids, microbial inoculants (phyllospheric and rhizospheric), and more
Biotechnological Approaches for Sustaining Forest Trees and Their Products
Author: Dennis Thomas T
Publisher: Springer Nature
ISBN: 981974363X
Category :
Languages : en
Pages : 547
Book Description
Publisher: Springer Nature
ISBN: 981974363X
Category :
Languages : en
Pages : 547
Book Description
Hormonal Cross-Talk, Plant Defense and Development
Author: Azamal Husen
Publisher: Elsevier
ISBN: 0323958427
Category : Science
Languages : en
Pages : 452
Book Description
Hormonal Cross-Talk, Plant Defense and Development: Plant Biology, Sustainability and Climate Change focuses specifically on plants and their interaction to auxins, gibberellins, cytokinins, ethylene, abscisic acid, jasmonates, brassinosteroids, strigolactones, and the potential those interactions offer for improved plant health and production. Plant hormones (auxins, gibberellins, cytokinins, ethylene, abscisic acid, jasmonates, brassinosteroids, salicylic acid, strigolactones etc.) regulate numerous aspects of plant growth and developmental processes. Each hormone initiates a specific molecular pathway, with each pathway integrated in a complex network of synergistic, antagonistic and additive interactions. This is a valuable reference for those seeking to understand and improve plant health using natural processes. The cross-talks of auxins - abscisic acid, auxins - brassinosteroids, brassinosteroids- abscisic acid, ethylene - abscisic acid, brassinosteroids - ethylene, cytokinins - abscisic acid, brassinosteroids - jasmonates, brassinosteroids - salicylic acid, and gibberellins - jasmonates - strigolactones have been shown to regulate a number of biological processes in plant system. The cross-talk provides robustness to the plant immune system but also drives specificity of induced defense responses against the plethora of biotic and abiotic interactions. - Describes hormonal cross-talk and plant defense with suitable illustrations - Includes a focus on secondary metabolites and/or bioactive compounds interactions with various plant hormones - Highlights the use of plant hormones and their interactions in plant growth and developmental processes at physiological, biochemical and molecular levels
Publisher: Elsevier
ISBN: 0323958427
Category : Science
Languages : en
Pages : 452
Book Description
Hormonal Cross-Talk, Plant Defense and Development: Plant Biology, Sustainability and Climate Change focuses specifically on plants and their interaction to auxins, gibberellins, cytokinins, ethylene, abscisic acid, jasmonates, brassinosteroids, strigolactones, and the potential those interactions offer for improved plant health and production. Plant hormones (auxins, gibberellins, cytokinins, ethylene, abscisic acid, jasmonates, brassinosteroids, salicylic acid, strigolactones etc.) regulate numerous aspects of plant growth and developmental processes. Each hormone initiates a specific molecular pathway, with each pathway integrated in a complex network of synergistic, antagonistic and additive interactions. This is a valuable reference for those seeking to understand and improve plant health using natural processes. The cross-talks of auxins - abscisic acid, auxins - brassinosteroids, brassinosteroids- abscisic acid, ethylene - abscisic acid, brassinosteroids - ethylene, cytokinins - abscisic acid, brassinosteroids - jasmonates, brassinosteroids - salicylic acid, and gibberellins - jasmonates - strigolactones have been shown to regulate a number of biological processes in plant system. The cross-talk provides robustness to the plant immune system but also drives specificity of induced defense responses against the plethora of biotic and abiotic interactions. - Describes hormonal cross-talk and plant defense with suitable illustrations - Includes a focus on secondary metabolites and/or bioactive compounds interactions with various plant hormones - Highlights the use of plant hormones and their interactions in plant growth and developmental processes at physiological, biochemical and molecular levels
Plant Microtubules
Author: Peter Nick
Publisher: Springer Science & Business Media
ISBN: 3662223007
Category : Science
Languages : en
Pages : 210
Book Description
Manipulation of plant architecture is regarded as a new and promising issue in plant biotechnology. Given the important role of the cytoskeleton during plant growth and development, microtubules provide an important target for biotechnological applications aiming to change plant architecture. This book introduces some microtubule-mediated key processes that are important for plant life and amenable to manipulation by either genetic, pharmacological or morphological rationales. In the first part, the role of microtubules in plant morphogenesis is reviewed. The second part covers their role in response to environmental factors. The third part deals with the tools that can be used for biotechnological manipulation.
Publisher: Springer Science & Business Media
ISBN: 3662223007
Category : Science
Languages : en
Pages : 210
Book Description
Manipulation of plant architecture is regarded as a new and promising issue in plant biotechnology. Given the important role of the cytoskeleton during plant growth and development, microtubules provide an important target for biotechnological applications aiming to change plant architecture. This book introduces some microtubule-mediated key processes that are important for plant life and amenable to manipulation by either genetic, pharmacological or morphological rationales. In the first part, the role of microtubules in plant morphogenesis is reviewed. The second part covers their role in response to environmental factors. The third part deals with the tools that can be used for biotechnological manipulation.
Horticultural Reviews, Volume 44
Author: Jules Janick
Publisher: John Wiley & Sons
ISBN: 1119281253
Category : Science
Languages : en
Pages : 512
Book Description
Horticultural Reviews presents state-of-the-art reviews on topics in horticultural science and technology covering both basic and applied research. Topics covered include the horticulture of fruits, vegetables, nut crops, and ornamentals. These review articles, written by world authorities, bridge the gap between the specialized researcher and the broader community of horticultural scientists and teachers.
Publisher: John Wiley & Sons
ISBN: 1119281253
Category : Science
Languages : en
Pages : 512
Book Description
Horticultural Reviews presents state-of-the-art reviews on topics in horticultural science and technology covering both basic and applied research. Topics covered include the horticulture of fruits, vegetables, nut crops, and ornamentals. These review articles, written by world authorities, bridge the gap between the specialized researcher and the broader community of horticultural scientists and teachers.
Protocols for Micropropagation of Woody Trees and Fruits
Author: S.Mohan Jain
Publisher: Springer Science & Business Media
ISBN: 1402063520
Category : Technology & Engineering
Languages : en
Pages : 548
Book Description
Micropropagation has become a reliable and routine approach for large-scale rapid plant multiplication, which is based on plant cell, tissue and organ culture on well defined tissue culture media under aseptic conditions. A lot of research efforts are being made to develop and refine micropropagation methods and culture media for large-scale plant multiplication of several number of plant species. However, many forest and fruit tree species still remain recalcitrant to in vitro culture and require highly specific culture conditions for plant growth and development. The recent challenges on plant cell cycle regulation and the presented potential molecular mechanisms of recalcitrance are providing excellent background for understanding on totipotency and what is more development of micropropagation protocols. For large-scale in vitro plant production the important attributes are the quality, cost effectiveness, maintenance of genetic fidelity, and long-term storage. The need for appropriate in vitro plant regeneration methods for woody plants, including both forest and fruit trees, is still overwhelming in order to overcome problems facing micropropagation such as somaclonal variation, recalcitrant rooting, hyperhydricity, polyphenols, loss of material during hardening and quality of plant material. Moreover, micropropagation may be utilized, in basic research, in production of virus-free planting material, cryopreservation of endangered and elite woody species, applications in tree breeding and reforestation.
Publisher: Springer Science & Business Media
ISBN: 1402063520
Category : Technology & Engineering
Languages : en
Pages : 548
Book Description
Micropropagation has become a reliable and routine approach for large-scale rapid plant multiplication, which is based on plant cell, tissue and organ culture on well defined tissue culture media under aseptic conditions. A lot of research efforts are being made to develop and refine micropropagation methods and culture media for large-scale plant multiplication of several number of plant species. However, many forest and fruit tree species still remain recalcitrant to in vitro culture and require highly specific culture conditions for plant growth and development. The recent challenges on plant cell cycle regulation and the presented potential molecular mechanisms of recalcitrance are providing excellent background for understanding on totipotency and what is more development of micropropagation protocols. For large-scale in vitro plant production the important attributes are the quality, cost effectiveness, maintenance of genetic fidelity, and long-term storage. The need for appropriate in vitro plant regeneration methods for woody plants, including both forest and fruit trees, is still overwhelming in order to overcome problems facing micropropagation such as somaclonal variation, recalcitrant rooting, hyperhydricity, polyphenols, loss of material during hardening and quality of plant material. Moreover, micropropagation may be utilized, in basic research, in production of virus-free planting material, cryopreservation of endangered and elite woody species, applications in tree breeding and reforestation.
Root Ecology
Author: Hans de Kroon
Publisher: Springer Science & Business Media
ISBN: 9783540001850
Category : Science
Languages : en
Pages : 424
Book Description
In the course of evolution, a great variety of root systems have learned to overcome the many physical, biochemical and biological problems brought about by soil. This development has made them a fascinating object of scientific study. This volume gives an overview of how roots have adapted to the soil environment and which roles they play in the soil ecosystem. The text describes the form and function of roots, their temporal and spatial distribution, and their turnover rate in various ecosystems. Subsequently, a physiological background is provided for basic functions, such as carbon acquisition, water and solute movement, and for their responses to three major abiotic stresses, i.e. hard soil structure, drought and flooding. The volume concludes with the interactions of roots with other organisms of the complex soil ecosystem, including symbiosis, competition, and the function of roots as a food source.
Publisher: Springer Science & Business Media
ISBN: 9783540001850
Category : Science
Languages : en
Pages : 424
Book Description
In the course of evolution, a great variety of root systems have learned to overcome the many physical, biochemical and biological problems brought about by soil. This development has made them a fascinating object of scientific study. This volume gives an overview of how roots have adapted to the soil environment and which roles they play in the soil ecosystem. The text describes the form and function of roots, their temporal and spatial distribution, and their turnover rate in various ecosystems. Subsequently, a physiological background is provided for basic functions, such as carbon acquisition, water and solute movement, and for their responses to three major abiotic stresses, i.e. hard soil structure, drought and flooding. The volume concludes with the interactions of roots with other organisms of the complex soil ecosystem, including symbiosis, competition, and the function of roots as a food source.