Statistical Methods in Analytical Chemistry

Statistical Methods in Analytical Chemistry PDF Author: Peter C. Meier
Publisher: John Wiley & Sons
ISBN: 0471726117
Category : Science
Languages : en
Pages : 452

Get Book Here

Book Description
This new edition of a successful, bestselling book continues to provide you with practical information on the use of statistical methods for solving real-world problems in complex industrial environments. Complete with examples from the chemical and pharmaceutical laboratory and manufacturing areas, this thoroughly updated book clearly demonstrates how to obtain reliable results by choosing the most appropriate experimental design and data evaluation methods. Unlike other books on the subject, Statistical Methods in Analytical Chemistry, Second Edition presents and solves problems in the context of a comprehensive decision-making process under GMP rules: Would you recommend the destruction of a $100,000 batch of product if one of four repeat determinations barely fails the specification limit? How would you prevent this from happening in the first place? Are you sure the calculator you are using is telling the truth? To help you control these situations, the new edition: * Covers univariate, bivariate, and multivariate data * Features case studies from the pharmaceutical and chemical industries demonstrating typical problems analysts encounter and the techniques used to solve them * Offers information on ancillary techniques, including a short introduction to optimization, exploratory data analysis, smoothing and computer simulation, and recapitulation of error propagation * Boasts numerous Excel files and compiled Visual Basic programs-no statistical table lookups required! * Uses Monte Carlo simulation to illustrate the variability inherent in statistically indistinguishable data sets Statistical Methods in Analytical Chemistry, Second Edition is an excellent, one-of-a-kind resource for laboratory scientists and engineers and project managers who need to assess data reliability; QC staff, regulators, and customers who want to frame realistic requirements and specifications; as well as educators looking for real-life experiments and advanced students in chemistry and pharmaceutical science. From the reviews of Statistical Methods in Analytical Chemistry, First Edition: "This book is extremely valuable. The authors supply many very useful programs along with their source code. Thus, the user can check the authenticity of the result and gain a greater understanding of the algorithm from the code. It should be on the bookshelf of every analytical chemist."-Applied Spectroscopy "The authors have compiled an interesting collection of data to illustrate the application of statistical methods . . . including calibrating, setting detection limits, analyzing ANOVA data, analyzing stability data, and determining the influence of error propagation."-Clinical Chemistry "The examples are taken from a chemical/pharmaceutical environment, but serve as convenient vehicles for the discussion of when to use which test, and how to make sense out of the results. While practical use of statistics is the major concern, it is put into perspective, and the reader is urged to use plausibility checks."-Journal of Chemical Education "The discussion of univariate statistical tests is one of the more thorough I have seen in this type of book . . . The treatment of linear regression is also thorough, and a complete set of equations for uncertainty in the results is presented . . . The bibliography is extensive and will serve as a valuable resource for those seeking more information on virtually any topic covered in the book."-Journal of American Chemical Society "This book treats the application of statistics to analytical chemistry in a very practical manner. [It] integrates PC computing power, testing programs, and analytical know-how in the context of good manufacturing practice/good laboratory practice (GMP/GLP) . . .The book is of value in many fields of analytical chemistry and should be available in all relevant libraries."-Chemometrics and Intelligent Laboratory Systems

Inverse Problems, Design and Optimization - vol. 1

Inverse Problems, Design and Optimization - vol. 1 PDF Author:
Publisher: Editora E-papers
ISBN: 8576500299
Category :
Languages : en
Pages : 365

Get Book Here

Book Description


Self-starting Multivariate Exponentially Weighted Moving Average

Self-starting Multivariate Exponentially Weighted Moving Average PDF Author: Edgard Messan Maboudou-Tchao
Publisher:
ISBN:
Category :
Languages : en
Pages : 314

Get Book Here

Book Description


Multivariate Quality Control

Multivariate Quality Control PDF Author: Camil Fuchs
Publisher: CRC Press
ISBN: 148227373X
Category : Business & Economics
Languages : en
Pages : 229

Get Book Here

Book Description
Provides a theoretical foundation as well as practical tools for the analysis of multivariate data, using case studies and MINITAB computer macros to illustrate basic and advanced quality control methods. This work offers an approach to quality control that relies on statistical tolerance regions, and discusses computer graphic analysis highlightin

Multivariate Statistical Quality Control Using R

Multivariate Statistical Quality Control Using R PDF Author: Edgar Santos-Fernández
Publisher: Springer Science & Business Media
ISBN: 1461454530
Category : Computers
Languages : en
Pages : 134

Get Book Here

Book Description
​​​​​The intensive use of automatic data acquisition system and the use of cloud computing for process monitoring have led to an increased occurrence of industrial processes that utilize statistical process control and capability analysis. These analyses are performed almost exclusively with multivariate methodologies. The aim of this Brief is to present the most important MSQC techniques developed in R language. The book is divided into two parts. The first part contains the basic R elements, an introduction to statistical procedures, and the main aspects related to Statistical Quality Control (SQC). The second part covers the construction of multivariate control charts, the calculation of Multivariate Capability Indices.

Statistical Practice in Business and Industry

Statistical Practice in Business and Industry PDF Author: Shirley Coleman
Publisher: John Wiley & Sons
ISBN: 0470997478
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
This book covers all the latest advances, as well as more established methods, in the application of statistical and optimisation methods within modern industry. These include applications from a range of industries that include micro-electronics, chemical, automotive, engineering, food, component assembly, household goods and plastics. Methods range from basic graphical approaches to generalised modelling, from designed experiments to process control. Solutions cover produce and process design, through manufacture to packaging and delivery, from single responses to multivariate problems.

Cumulative Sum Charts and Charting for Quality Improvement

Cumulative Sum Charts and Charting for Quality Improvement PDF Author: Douglas M. Hawkins
Publisher: Springer Science & Business Media
ISBN: 1461216869
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
Covering CUSUMs from an application-oriented viewpoint, while also providing the essential theoretical underpinning, this is an accessible guide for anyone with a basic statistical training. The text is aimed at quality practitioners, teachers and students of quality methodologies, and people interested in analysis of time-ordered data. Further support is available from a Web site containing CUSUM software and data sets.

Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences PDF Author: Wade H. Shafer
Publisher: Springer Science & Business Media
ISBN: 1461559693
Category : Science
Languages : en
Pages : 341

Get Book Here

Book Description
Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this jOint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 40 (thesis year 1995) a total of 10,746 thesis titles from 19 Canadian and 144 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 40 reports theses submitted in 1995, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.

A User's Guide to Principal Components

A User's Guide to Principal Components PDF Author: J. Edward Jackson
Publisher: John Wiley & Sons
ISBN: 0471725323
Category : Mathematics
Languages : en
Pages : 597

Get Book Here

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of A User’s Guide to Principal Components "The book is aptly and correctly named–A User’s Guide. It is the kind of book that a user at any level, novice or skilled practitioner, would want to have at hand for autotutorial, for refresher, or as a general-purpose guide through the maze of modern PCA." –Technometrics "I recommend A User’s Guide to Principal Components to anyone who is running multivariate analyses, or who contemplates performing such analyses. Those who write their own software will find the book helpful in designing better programs. Those who use off-the-shelf software will find it invaluable in interpreting the results." –Mathematical Geology

Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches

Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches PDF Author: Fouzi Harrou
Publisher: Elsevier
ISBN: 0128193662
Category : Technology & Engineering
Languages : en
Pages : 330

Get Book Here

Book Description
Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance and widen their practical applicability. The book proceeds with merging the desirable properties of shallow learning approaches – such as a one-class support vector machine and k-nearest neighbours and unsupervised deep learning approaches – to develop more sophisticated and efficient monitoring techniques. Finally, the developed approaches are applied to monitor many processes, such as waste-water treatment plants, detection of obstacles in driving environments for autonomous robots and vehicles, robot swarm, chemical processes (continuous stirred tank reactor, plug flow rector, and distillation columns), ozone pollution, road traffic congestion, and solar photovoltaic systems. - Uses a data-driven based approach to fault detection and attribution - Provides an in-depth understanding of fault detection and attribution in complex and multivariate systems - Familiarises you with the most suitable data-driven based techniques including multivariate statistical techniques and deep learning-based methods - Includes case studies and comparison of different methods