Enhancement of Biogas Production Using Co-substrates in Anaerobic Digesters for Medium Size Dairy Farms

Enhancement of Biogas Production Using Co-substrates in Anaerobic Digesters for Medium Size Dairy Farms PDF Author: Terrence Sauvé
Publisher:
ISBN:
Category : Biogas
Languages : en
Pages : 0

Get Book Here

Book Description

Enhancement of Biogas Production Using Co-substrates in Anaerobic Digesters for Medium Size Dairy Farms

Enhancement of Biogas Production Using Co-substrates in Anaerobic Digesters for Medium Size Dairy Farms PDF Author: Terrence Sauvé
Publisher:
ISBN:
Category : Biogas
Languages : en
Pages : 0

Get Book Here

Book Description


Enhancement of Biogas Production Using Co-substrates in Anaerobic Digesters for Medium Size Dairy Farms

Enhancement of Biogas Production Using Co-substrates in Anaerobic Digesters for Medium Size Dairy Farms PDF Author: Terrence Sauvé
Publisher:
ISBN:
Category : University of Ottawa theses
Languages : en
Pages : 350

Get Book Here

Book Description


The Microbiology of Anaerobic Digesters

The Microbiology of Anaerobic Digesters PDF Author: Michael H. Gerardi
Publisher: John Wiley & Sons
ISBN: 0471468959
Category : Science
Languages : en
Pages : 189

Get Book Here

Book Description
Anaerobic digestion is a biochemical degradation process that converts complex organic material, such as animal manure, into methane and other byproducts. Part of the author's Wastewater Microbiology series, Microbiology of Anareboic Digesters eschews technical jargon to deliver a practical, how-to guide for wastewater plant operators.

Anaerobic Digestion of Dairy Manure with Food and Industry Wastes - Enhanced Biogas Production and Digestate Quality

Anaerobic Digestion of Dairy Manure with Food and Industry Wastes - Enhanced Biogas Production and Digestate Quality PDF Author: Anna Maria Crolla
Publisher:
ISBN:
Category : Agricultural wastes as fuel
Languages : en
Pages :

Get Book Here

Book Description
The Ontario biogas industry is relatively young and the overall objective of this research was to help support the growth of the industry with investigating the use of co-substrates and reactor design to enhance biogas production, recommend guidelines on the operation of full scale systems to optimize performance and characterize digestate quality. Laboratory studies evaluated the use of various substrates in the co-digestion with liquid dairy manure. These studies were used to establish ultimate biogas yields, % volatile solids (VS) reduction and minimum hydraulic retention times (HRTs). Box-Wilson Central Composite design models for corn thin stillage and waste grease (as co-substrates with dairy manure) suggest methane yields optimize with increasing proportion of the feed VS from co-substrates (constant total VS in all assays) and increasing temperatures; however, temperature had a great effect. Bench scale studies were conducted to determine a change in digester design to optimize biogas yields and increase digestate stability. A two-phase digestion system was implemented for co-digestion systems using thin stillage and waste grease with dairy manure, and methane yields showed to increase by over 22% when compared with single-phase systems. Based on current FIT contracts of 18 to 20?/kWhe, the increased electricity and heat production could make the two-phase system economically attractive for producers. Organic loading rates (OLRs) over 4.4 g VS/L led to digester upset and OLRs of over 4.2 g VS/L·day are not recommended. On-farm anaerobic digester systems were studied for digester performance and digestate quality. Residual biogas potential (RBP) yields were effective at evaluating the stability of digestate and the U.K. PAS 110:2014 limit of 0.45 L biogas/g VS (28 days incubation) was assessed too lenient for the Ontario systems studied. A limit of 0.25 L biogas/g VS after 28 days of incubation or 0.45 L biogas/g VS after 60 days of incubation are recommended. VS reductions ranged from 56 to 76% and easily achieved the O. Reg. 267/03 regulated 50% VS reduction. E.coli and Salmonella were typically 1 to 3 logs CFU/100 mL lower than raw manure and increased HRT did not demonstrate a significant impact on the bacterial log reductions. Intermediate alkalinity (IA)/partial alkalinity (PA) proved to be a valuable tool in determining potential digester upset and has been recommended as a standard performance parameter for on-farm systems.

Enhancement of Biogas Production from Organic Wastes Through Leachate Blending and Co-digestion

Enhancement of Biogas Production from Organic Wastes Through Leachate Blending and Co-digestion PDF Author: Adewale Aromolaran
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Several operational and environmental conditions can result in poor biogas yield during the operation of anaerobic digesters and anaerobic bioreactor landfills. Over time, anaerobic co-digestion and leachate blending have been identified as strategies that can help address some of these challenges to improve biogas production. While co-digestion entails the co-treatment of multiple substrates, leachate blending involves combination of mature and young landfill leachate. Despite the benefits attributed to these strategies, their impact on recirculating bioreactor landfill scenarios and anaerobic digesters requires further investigation. In the first phase of this thesis, an attempt to assess biogas production improvement from organic fraction of municipal solid waste in simulated bioreactor landfills through recirculation of blended landfill leachate was conducted. Real old and new leachate blends (67%New leachate:33%Old leachate, 33%New leachate:67%Old leachate) as well as 100%New and 100%Old leachate were recirculated through six laboratory-scale bioreactors using open-loop and closed-loops modes. Compared with the control bioreactor where 100% new leachate was recirculated and operated as a closed-loop, cumulative biogas production was improved by as much as 77 to 193% when a leachate blend of 33%New:67%Old was recirculated. Furthermore, comparison of the results from open-loop and closed-loop operated bioreactors indicated that there was approximately 28 to 65% more biogas in open-loop bioreactors. The Gompertz model applied to the methane data produced a better fit (R2 > 0.99) than first order and logistic function models. Leachate blending reduced the lag phase by almost half and thus helps in alleviating the ensiling during the start-up phase. In the second phase, a biochemical methane potential (BMP) assay was conducted to investigate the synergistic effect of percentage sewage scum addition; 10%, 20% and 40% (volatile solids basis) on biogas production during mesophilic co-digestion with various organic substrates viz; organic fraction of municipal solid waste, old leachate, new leachate and a leachate blend prepared from 67%old leachate and 33%new leachate under sub-optimal condition. Results show that the net cumulative bio-methane yield was improved with increased sewage scum percentage during co-digestion because of positive synergism. Meanwhile, the addition of 40% sewage scum to the individual co-substrates improved net cumulative bio-methane yield by 28% - 67% when compared to their respective mono-substrate digestion bio-methane yield. Furthermore, reactors containing leachate blends consistently produced more biogas over other sets because of blending. Kinetic modelling applied to the bio-methane production data shows modified Gompertz equation achieved a better fit with up to an R2 value of 0.999. Finally, co-digestion substantially reduced the lag time encountered during mono-digestion. In the last phase, the biomethane potential involved in the ACo-D of sewage scum, organic fraction of municipal solid waste was investigated in this phase using either thickened waste activated sludge or leachate blend (67%old leachate and 33%new leachate) as a tertiary component. Compared to the mono-digestion of TWAS, results shows that biomethane yield was enhanced in by as much as 32 - 127% in trinary mixtures with SS and OFMSW mainly due to the effect of positive synergism. Furthermore, LB addition improved biomethane production in trinary mixtures of SS:LB: OFMSW by 38% than in corresponding trinary mixtures of TWAS. Whereas an optimal combination of 40%SS:10%TWAS:50%OFMSW and 20%SS:70%LB:10%OFMSW produced the highest biogas yield of 407mL.gVS-1 and 487mL.gVS-1 respectively. The application of the first order model showed that lower hydrolysis rates promoted methanogenesis with k = 0.04day-1 in both 20%SS:70%LB:10%OFMSW and 20%SS:50%LB:30%OFMSW. Estimations by the modified Gompertz and logistic function were conclusive methane production rate improved by as much a 60% in a trinary mixture over the production rate during mono-digestion of TWAS alone. The results of the various experiments of this thesis therefore suggest that leachate blending can be used as a strategy to improve biogas production in both bioreactor landfills and anaerobic digesters. Also, sewage scum as an energy-rich substrate can be better utilized during co-digestion with other low-energy substrates.

The Future of Glycerol

The Future of Glycerol PDF Author: Mario Pagliaro
Publisher: Royal Society of Chemistry
ISBN: 0854041249
Category : Science
Languages : en
Pages : 145

Get Book Here

Book Description
By-products of global biodiesel manufacturing are a modern day global fact responsible for igniting a number of year's worldwide intense research activity into human chemical ingenuity. This highly anticipated 2nd Edition depicts how practical limitations posed by glycerol chemistry are solved based on the understanding of the fundamental chemistry of glycerol and by application of catalysis science and technology. The authors report and comment on employable, practical avenues applicable to convert glycerol into value added products of mass consumption. The best-selling reference book in the.

Anaerobic Biotechnology for Bioenergy Production

Anaerobic Biotechnology for Bioenergy Production PDF Author: Samir Kumar Khanal
Publisher: John Wiley & Sons
ISBN: 1119949424
Category : Technology & Engineering
Languages : en
Pages : 322

Get Book Here

Book Description
Anaerobic biotechnology is a cost-effective and sustainable means of treating waste and wastewaters that couples treatment processes with the reclamation of useful by-products and renewable biofuels. This means of treating municipal, agricultural, and industrial wastes allows waste products to be converted to value-added products such as biofuels, biofertilizers, and other chemicals. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications provides the reader with basic principles of anaerobic processes alongside practical uses of anaerobic biotechnology options. This book will be a valuable reference to any professional currently considering or working with anaerobic biotechnology options.

Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals

Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals PDF Author: Charles E. Wyman
Publisher: John Wiley & Sons
ISBN: 111856040X
Category : Science
Languages : en
Pages : 597

Get Book Here

Book Description
Plant biomass is attracting increasing attention as a sustainable resource for large-scale production of renewable fuels and chemicals. However, in order to successfully compete with petroleum, it is vital that biomass conversion processes are designed to minimize costs and maximize yields. Advances in pretreatment technology are critical in order to develop high-yielding, cost-competitive routes to renewable fuels and chemicals. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals presents a comprehensive overview of the currently available aqueous pretreatment technologies for cellulosic biomass, highlighting the fundamental chemistry and biology of each method, key attributes and limitations, and opportunities for future advances. Topics covered include: • The importance of biomass conversion to fuels • The role of pretreatment in biological and chemical conversion of biomass • Composition and structure of biomass, and recalcitrance to conversion • Fundamentals of biomass pretreatment at low, neutral and high pH • Ionic liquid and organosolv pretreatments to fractionate biomass • Comparative data for application of leading pretreatments and effect of enzyme formulations • Physical and chemical features of pretreated biomass • Economics of pretreatment for biological processing • Methods of analysis and enzymatic conversion of biomass streams • Experimental pretreatment systems from multiwell plates to pilot plant operations This comprehensive reference book provides an authoritative source of information on the pretreatment of cellulosic biomass to aid those experienced in the field to access the most current information on the topic. It will also be invaluable to those entering the growing field of biomass conversion.

Anaerobic Co-Digestion of Lignocellulosic Waste

Anaerobic Co-Digestion of Lignocellulosic Waste PDF Author: Luis Isidoro Romero García
Publisher: MDPI
ISBN: 3036511423
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
Some terms, such as eco-friendly, circular economy and green technologies, have remained in our vocabulary, because the truth is that mankind is altering the planet to put its own subsistence at risk. Besides, for rationalization in the consumption of raw materials and energy, the recycling of waste through efficient and sustainable processes forms the backbone of the paradigm of a sustainable industry. One of the most relevant technologies for the new productive model is anaerobic digestion. Historically, anaerobic digestion has been developed in the field of urban wastes and wastewater treatments, but in the new challenge, its role is more relevant. Anaerobic digestion is a technologically mature biological treatment, which joins bioenergy production with the efficient removal of contaminants. This issue provides a specialized, but broad in scope, overview of the possibilities of the anaerobic digestion of lignocellulosic biomass (mainly forestry and agricultural wastes), which is expected to be a more promising substrate for the development of biorefineries. Its conversion to bioenergy through anaerobic digestion must solve some troubles: the complex lignocellulosic structure needs to be deconstructed by pretreatments and a co-substrate may need to be added to improve the biological process. Ten selected works advance this proposal into the future.

Bioenergy Production by Anaerobic Digestion

Bioenergy Production by Anaerobic Digestion PDF Author: Nicholas Korres
Publisher: Routledge
ISBN: 1136489649
Category : Technology & Engineering
Languages : en
Pages : 473

Get Book Here

Book Description
Interest in anaerobic digestion (AD), the process of energy production through the production of biogas, has increased rapidly in recent years. Agricultural and other organic waste are important substrates that can be treated by AD. This book is one of the first to provide a broad introduction to anaerobic digestion and its potential to turn agricultural crops or crop residues, animal and other organic waste, into biomethane. The substrates used can include any non-woody materials, including grass and maize silage, seaweeds, municipal and industrial wastes. These are all systematically reviewed in terms of their suitability from a biological, technical and economic perspective. In the past the technical competence and high capital investment required for industrial-scale anaerobic digesters has limited their uptake, but the authors show that recent advances have made smaller-scale systems more viable through a greater understanding of optimising bacterial metabolism and productivity. Broader issues such as life cycle assessment and energy policies to promote AD are also discussed.