Author: Amer Al-Hinai
Publisher: CRC Press
ISBN: 1000780198
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
Enhancing the integration of renewable power generation from wind and solar into the traditional power network requires the mitigation of the vulnerabilities affecting the grid as a result of the intermittent nature of these resources. Variability and ramp events in power output are the key challenges to the system operators due to their impact on system balancing, reserves management, scheduling, and commitment of generation units. This book presents development of energy management system for renewable power generation (EMSRPG) tool that aims to achieve power-dispatching strategies based on forecasting renewable energy resources outputs to guarantee optimal dispatch of hybrid wind-solar photovoltaic power systems (HWSPS). The key selling points of the book include the following: Renewable energy management in modern and future smart power systems Energy management systems Modeling and simulations using a real-time digital simulator (RTDS) High penetration level of renewable energy sources Case studies based on Oman’s power systems and other power grids This book discusses the challenges of integrating renewable resources, including low inertia systems, hosting capacity limitations of existing power systems, and weak grids. It further examines the detailed topologies, operation principles, recent developments in control techniques, and stability of power systems with a large scale of renewables. Finally, it presents case studies of recent projects from around the world where dispatchable power plant techniques are used to enhance power system operation.
Energy Management System for Dispatchable Renewable Power Generation
Author: Amer Al-Hinai
Publisher: CRC Press
ISBN: 1000780198
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
Enhancing the integration of renewable power generation from wind and solar into the traditional power network requires the mitigation of the vulnerabilities affecting the grid as a result of the intermittent nature of these resources. Variability and ramp events in power output are the key challenges to the system operators due to their impact on system balancing, reserves management, scheduling, and commitment of generation units. This book presents development of energy management system for renewable power generation (EMSRPG) tool that aims to achieve power-dispatching strategies based on forecasting renewable energy resources outputs to guarantee optimal dispatch of hybrid wind-solar photovoltaic power systems (HWSPS). The key selling points of the book include the following: Renewable energy management in modern and future smart power systems Energy management systems Modeling and simulations using a real-time digital simulator (RTDS) High penetration level of renewable energy sources Case studies based on Oman’s power systems and other power grids This book discusses the challenges of integrating renewable resources, including low inertia systems, hosting capacity limitations of existing power systems, and weak grids. It further examines the detailed topologies, operation principles, recent developments in control techniques, and stability of power systems with a large scale of renewables. Finally, it presents case studies of recent projects from around the world where dispatchable power plant techniques are used to enhance power system operation.
Publisher: CRC Press
ISBN: 1000780198
Category : Technology & Engineering
Languages : en
Pages : 289
Book Description
Enhancing the integration of renewable power generation from wind and solar into the traditional power network requires the mitigation of the vulnerabilities affecting the grid as a result of the intermittent nature of these resources. Variability and ramp events in power output are the key challenges to the system operators due to their impact on system balancing, reserves management, scheduling, and commitment of generation units. This book presents development of energy management system for renewable power generation (EMSRPG) tool that aims to achieve power-dispatching strategies based on forecasting renewable energy resources outputs to guarantee optimal dispatch of hybrid wind-solar photovoltaic power systems (HWSPS). The key selling points of the book include the following: Renewable energy management in modern and future smart power systems Energy management systems Modeling and simulations using a real-time digital simulator (RTDS) High penetration level of renewable energy sources Case studies based on Oman’s power systems and other power grids This book discusses the challenges of integrating renewable resources, including low inertia systems, hosting capacity limitations of existing power systems, and weak grids. It further examines the detailed topologies, operation principles, recent developments in control techniques, and stability of power systems with a large scale of renewables. Finally, it presents case studies of recent projects from around the world where dispatchable power plant techniques are used to enhance power system operation.
Energy Management System for Dispatchable Renewable Power Generation
Author: Amer Al-Hinai
Publisher: CRC Press
ISBN: 100078018X
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Enhancing the integration of renewable power generation from wind and solar into the traditional power network requires the mitigation of the vulnerabilities affecting the grid as a result of the intermittent nature of these resources. Variability and ramp events in power output are the key challenges to the system operators due to their impact on system balancing, reserves management, scheduling, and commitment of generation units. This book presents development of energy management system for renewable power generation (EMSRPG) tool that aims to achieve power-dispatching strategies based on forecasting renewable energy resources outputs to guarantee optimal dispatch of hybrid wind-solar photovoltaic power systems (HWSPS). The key selling points of the book include the following: Renewable energy management in modern and future smart power systems Energy management systems Modeling and simulations using a real-time digital simulator (RTDS) High penetration level of renewable energy sources Case studies based on Oman’s power systems and other power grids This book discusses the challenges of integrating renewable resources, including low inertia systems, hosting capacity limitations of existing power systems, and weak grids. It further examines the detailed topologies, operation principles, recent developments in control techniques, and stability of power systems with a large scale of renewables. Finally, it presents case studies of recent projects from around the world where dispatchable power plant techniques are used to enhance power system operation.
Publisher: CRC Press
ISBN: 100078018X
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Enhancing the integration of renewable power generation from wind and solar into the traditional power network requires the mitigation of the vulnerabilities affecting the grid as a result of the intermittent nature of these resources. Variability and ramp events in power output are the key challenges to the system operators due to their impact on system balancing, reserves management, scheduling, and commitment of generation units. This book presents development of energy management system for renewable power generation (EMSRPG) tool that aims to achieve power-dispatching strategies based on forecasting renewable energy resources outputs to guarantee optimal dispatch of hybrid wind-solar photovoltaic power systems (HWSPS). The key selling points of the book include the following: Renewable energy management in modern and future smart power systems Energy management systems Modeling and simulations using a real-time digital simulator (RTDS) High penetration level of renewable energy sources Case studies based on Oman’s power systems and other power grids This book discusses the challenges of integrating renewable resources, including low inertia systems, hosting capacity limitations of existing power systems, and weak grids. It further examines the detailed topologies, operation principles, recent developments in control techniques, and stability of power systems with a large scale of renewables. Finally, it presents case studies of recent projects from around the world where dispatchable power plant techniques are used to enhance power system operation.
Energy Management of Distributed Generation Systems
Author: Lucian Mihet-Popa
Publisher: BoD – Books on Demand
ISBN: 9535124730
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
The book contains 10 chapters, and it is divided into four sections. The first section includes three chapters, providing an overview of Energy Management of Distributed Systems. It outlines typical concepts, such as Demand-Side Management, Demand Response, Distributed, and Hierarchical Control for Smart Micro-Grids. The second section contains three chapters and presents different control algorithms, software architectures, and simulation tools dedicated to Energy Management Systems. In the third section, the importance and the role of energy storage technology in a Distribution System, describing and comparing different types of energy storage systems, is shown. The fourth section shows how to identify and address potential threats for a Home Energy Management System. Finally, the fifth section discusses about Economical Optimization of Operational Cost for Micro-Grids, pointing out the effect of renewable energy sources, active loads, and energy storage systems on economic operation.
Publisher: BoD – Books on Demand
ISBN: 9535124730
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
The book contains 10 chapters, and it is divided into four sections. The first section includes three chapters, providing an overview of Energy Management of Distributed Systems. It outlines typical concepts, such as Demand-Side Management, Demand Response, Distributed, and Hierarchical Control for Smart Micro-Grids. The second section contains three chapters and presents different control algorithms, software architectures, and simulation tools dedicated to Energy Management Systems. In the third section, the importance and the role of energy storage technology in a Distribution System, describing and comparing different types of energy storage systems, is shown. The fourth section shows how to identify and address potential threats for a Home Energy Management System. Finally, the fifth section discusses about Economical Optimization of Operational Cost for Micro-Grids, pointing out the effect of renewable energy sources, active loads, and energy storage systems on economic operation.
Scheduling and Operation of Virtual Power Plants
Author: Ali Zangeneh
Publisher: Elsevier
ISBN: 0323852688
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Scheduling and Operation of Virtual Power Plants: Technical Challenges and Electricity Markets provides a multidisciplinary perspective on recent advances in VPPs, ranging from required infrastructures and planning to operation and control. The work details the required components in a virtual power plant, including smartness of power system, instrument and information and communication technologies (ICTs), measurement units, and distributed energy sources. Contributors assess the proposed benefits of virtual power plant in solving problems of distributed energy sources in integrating the small, distributed and intermittent output of these units. In addition, they investigate the likely technical challenges regarding control and interaction with other entities. Finally, the work considers the role of VPPs in electricity markets, showing how distributed energy resources and demand response providers can integrate their resources through virtual power plant concepts to effectively participate in electricity markets to solve the issues of small capacity and intermittency. The work is suitable for experienced engineers, researchers, managers and policymakers interested in using VPPs in future smart grids. - Explores key enabling technologies and infrastructures for virtual power plants in future smart energy systems - Reviews technical challenges and introduces solutions to the operation and control of VPPs, particularly focusing on control and interaction with other power system entities - Introduces the key integrating role of VPPs in enabling DER powered participative electricity markets
Publisher: Elsevier
ISBN: 0323852688
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Scheduling and Operation of Virtual Power Plants: Technical Challenges and Electricity Markets provides a multidisciplinary perspective on recent advances in VPPs, ranging from required infrastructures and planning to operation and control. The work details the required components in a virtual power plant, including smartness of power system, instrument and information and communication technologies (ICTs), measurement units, and distributed energy sources. Contributors assess the proposed benefits of virtual power plant in solving problems of distributed energy sources in integrating the small, distributed and intermittent output of these units. In addition, they investigate the likely technical challenges regarding control and interaction with other entities. Finally, the work considers the role of VPPs in electricity markets, showing how distributed energy resources and demand response providers can integrate their resources through virtual power plant concepts to effectively participate in electricity markets to solve the issues of small capacity and intermittency. The work is suitable for experienced engineers, researchers, managers and policymakers interested in using VPPs in future smart grids. - Explores key enabling technologies and infrastructures for virtual power plants in future smart energy systems - Reviews technical challenges and introduces solutions to the operation and control of VPPs, particularly focusing on control and interaction with other power system entities - Introduces the key integrating role of VPPs in enabling DER powered participative electricity markets
Design of Smart Power Grid Renewable Energy Systems
Author: Ali Keyhani
Publisher: John Wiley & Sons
ISBN: 1118978927
Category : Science
Languages : en
Pages : 610
Book Description
Provides a systems approach to sustainable green energy production and contains analytical tools to aid in the design of renewable microgrids This book discusses the fundamental concepts of power grid integration on microgrids of green energy sources. In each chapter, the author presents a key engineering problem, and then formulates a mathematical model of the problem followed by a simulation testbed in MATLAB, highlighting solution steps. The book builds its foundation on design of distributed generating system, and design of PV generating plants by introducing design- efficient smart residential PV microgrids. These include energy monitoring systems, smart devices, building load estimation, load classification, and real-time pricing. The book presents basic concepts of phasor systems, three-phase systems, transformers, loads, DC/DC converters, DC/AC inverters, and AC/DC rectifiers, which are all integrated into the design of microgrids for renewable energy as part of bulk interconnected power grids. Other topics of discussion include the Newton formulation of power flow, the Newton—Raphson solution of a power flow problem, the fast decoupled solution for power flow studies, and short circuit calculations. Focuses on the utilization of DC/AC inverters as a three-terminal element of power systems for the integration of renewable energy sources Presents basic concepts of phasor systems, three-phase systems, transformers, loads, DC/DC converters, DC/AC inverters, and AC/DC rectifiers Contains problems at the end of each chapter Supplementary material includes a solutions manual and PowerPoint presentations for instructors Design of Smart Power Grid Renewable Energy Systems, Second Edition is a textbook for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals. ALI KEYHANI, Ph.D., is a Professor in the Department of Electrical and Computer Engineering at The Ohio State University. He is a Fellow of the IEEE and a recipient of The Ohio State University, College of Engineering Research Award for 1989, 1999, and 2003. He has worked for Columbus and Southern Electric Power Company, Hewlett-Packard Co., Foster Wheeler Engineering, and TRW. He has performed research and consulting for American Electric Power, TRW Control, Liebert, Delphi Automotive Systems, General Electric, General Motors, and Ford. Dr. Keyhani has authored many articles in IEEE Transactions in energy conversion, power electronics, and power systems engineering.
Publisher: John Wiley & Sons
ISBN: 1118978927
Category : Science
Languages : en
Pages : 610
Book Description
Provides a systems approach to sustainable green energy production and contains analytical tools to aid in the design of renewable microgrids This book discusses the fundamental concepts of power grid integration on microgrids of green energy sources. In each chapter, the author presents a key engineering problem, and then formulates a mathematical model of the problem followed by a simulation testbed in MATLAB, highlighting solution steps. The book builds its foundation on design of distributed generating system, and design of PV generating plants by introducing design- efficient smart residential PV microgrids. These include energy monitoring systems, smart devices, building load estimation, load classification, and real-time pricing. The book presents basic concepts of phasor systems, three-phase systems, transformers, loads, DC/DC converters, DC/AC inverters, and AC/DC rectifiers, which are all integrated into the design of microgrids for renewable energy as part of bulk interconnected power grids. Other topics of discussion include the Newton formulation of power flow, the Newton—Raphson solution of a power flow problem, the fast decoupled solution for power flow studies, and short circuit calculations. Focuses on the utilization of DC/AC inverters as a three-terminal element of power systems for the integration of renewable energy sources Presents basic concepts of phasor systems, three-phase systems, transformers, loads, DC/DC converters, DC/AC inverters, and AC/DC rectifiers Contains problems at the end of each chapter Supplementary material includes a solutions manual and PowerPoint presentations for instructors Design of Smart Power Grid Renewable Energy Systems, Second Edition is a textbook for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals. ALI KEYHANI, Ph.D., is a Professor in the Department of Electrical and Computer Engineering at The Ohio State University. He is a Fellow of the IEEE and a recipient of The Ohio State University, College of Engineering Research Award for 1989, 1999, and 2003. He has worked for Columbus and Southern Electric Power Company, Hewlett-Packard Co., Foster Wheeler Engineering, and TRW. He has performed research and consulting for American Electric Power, TRW Control, Liebert, Delphi Automotive Systems, General Electric, General Motors, and Ford. Dr. Keyhani has authored many articles in IEEE Transactions in energy conversion, power electronics, and power systems engineering.
Pathways to a Smarter Power System
Author: Ozan Erdinc
Publisher: Academic Press
ISBN: 0081025939
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
Pathways to a Smarter Power System studies different concepts within smart grids that are used in both industry and system regulators (e.g. distribution and transmission system operators) and research. This book covers these concepts from multiple perspectives and in multiple contexts, presenting detailed technical information on renewable energy systems, distributed generation and energy storage units, methods to activate the demand side of power systems, market structure needs, and advanced planning concepts and new operational requirements, specifically for power system protection, technological evolvements, and requirements regarding technology in ICT, power electronics and control areas. This book provides energy researchers and engineers with an indispensable guide on how to apply wider perspectives to the different technological and conceptual requirements of a smarter power system. - Includes concepts regarding conceptual and technological needs and investment planning suggestions for smart grid enabling strategies - Contains new electric power system operational concepts required by industry, along with R&D studies addressing new solutions to potential operational problems - Covers pathways to smarter power systems from successful existing examples to expected short, medium and long-term possibilities
Publisher: Academic Press
ISBN: 0081025939
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
Pathways to a Smarter Power System studies different concepts within smart grids that are used in both industry and system regulators (e.g. distribution and transmission system operators) and research. This book covers these concepts from multiple perspectives and in multiple contexts, presenting detailed technical information on renewable energy systems, distributed generation and energy storage units, methods to activate the demand side of power systems, market structure needs, and advanced planning concepts and new operational requirements, specifically for power system protection, technological evolvements, and requirements regarding technology in ICT, power electronics and control areas. This book provides energy researchers and engineers with an indispensable guide on how to apply wider perspectives to the different technological and conceptual requirements of a smarter power system. - Includes concepts regarding conceptual and technological needs and investment planning suggestions for smart grid enabling strategies - Contains new electric power system operational concepts required by industry, along with R&D studies addressing new solutions to potential operational problems - Covers pathways to smarter power systems from successful existing examples to expected short, medium and long-term possibilities
Renewable Energy
Author: Thomas Hammons
Publisher: BoD – Books on Demand
ISBN: 9537619524
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
Renewable Energy is energy generated from natural resources - such as sunlight, wind, rain, tides and geothermal heat - which are naturally replenished. In 2008, about 18% of global final energy consumption came from renewables, with 13% coming from traditional biomass, such as wood burning. Hydroelectricity was the next largest renewable source, providing 3% (15% of global electricity generation), followed by solar hot water/heating, which contributed with 1.3%. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8% of final energy consumption. The book provides a forum for dissemination and exchange of up - to - date scientific information on theoretical, generic and applied areas of knowledge. The topics deal with new devices and circuits for energy systems, photovoltaic and solar thermal, wind energy systems, tidal and wave energy, fuel cell systems, bio energy and geo-energy, sustainable energy resources and systems, energy storage systems, energy market management and economics, off-grid isolated energy systems, energy in transportation systems, energy resources for portable electronics, intelligent energy power transmission, distribution and inter - connectors, energy efficient utilization, environmental issues, energy harvesting, nanotechnology in energy, policy issues on renewable energy, building design, power electronics in energy conversion, new materials for energy resources, and RF and magnetic field energy devices.
Publisher: BoD – Books on Demand
ISBN: 9537619524
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
Renewable Energy is energy generated from natural resources - such as sunlight, wind, rain, tides and geothermal heat - which are naturally replenished. In 2008, about 18% of global final energy consumption came from renewables, with 13% coming from traditional biomass, such as wood burning. Hydroelectricity was the next largest renewable source, providing 3% (15% of global electricity generation), followed by solar hot water/heating, which contributed with 1.3%. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8% of final energy consumption. The book provides a forum for dissemination and exchange of up - to - date scientific information on theoretical, generic and applied areas of knowledge. The topics deal with new devices and circuits for energy systems, photovoltaic and solar thermal, wind energy systems, tidal and wave energy, fuel cell systems, bio energy and geo-energy, sustainable energy resources and systems, energy storage systems, energy market management and economics, off-grid isolated energy systems, energy in transportation systems, energy resources for portable electronics, intelligent energy power transmission, distribution and inter - connectors, energy efficient utilization, environmental issues, energy harvesting, nanotechnology in energy, policy issues on renewable energy, building design, power electronics in energy conversion, new materials for energy resources, and RF and magnetic field energy devices.
Power Quality in Microgrids: Issues, Challenges and Mitigation Techniques
Author: Surender Reddy Salkuti
Publisher: Springer Nature
ISBN: 9819920663
Category : Technology & Engineering
Languages : en
Pages : 584
Book Description
This book provides a brief insight of various challenges and its mitigation techniques in microgrid due to power quality (PQ) issues. The central concept of this book revolves around the PQ issues in microgrid. The main objective of this book is to make aware of the power and control engineers with different innovative techniques to mitigate the challenges due to PQ issues in microgrid. The topics covered in this book are PQ disturbances in microgrid and different recent and innovative schemes to mitigate them. The book emphasizes technical issues, theoretical background, and practical applications that drive postgraduates, researchers, and practicing engineers with right advanced skills, vision, and knowledge in finding microgrid power quality issues, various technical challenges and providing mitigation techniques for the future sustainable microgrids.
Publisher: Springer Nature
ISBN: 9819920663
Category : Technology & Engineering
Languages : en
Pages : 584
Book Description
This book provides a brief insight of various challenges and its mitigation techniques in microgrid due to power quality (PQ) issues. The central concept of this book revolves around the PQ issues in microgrid. The main objective of this book is to make aware of the power and control engineers with different innovative techniques to mitigate the challenges due to PQ issues in microgrid. The topics covered in this book are PQ disturbances in microgrid and different recent and innovative schemes to mitigate them. The book emphasizes technical issues, theoretical background, and practical applications that drive postgraduates, researchers, and practicing engineers with right advanced skills, vision, and knowledge in finding microgrid power quality issues, various technical challenges and providing mitigation techniques for the future sustainable microgrids.
Renewable and Efficient Electric Power Systems
Author: Gilbert M. Masters
Publisher: John Wiley & Sons
ISBN: 0471668834
Category : Technology & Engineering
Languages : en
Pages : 676
Book Description
This is a comprehensive textbook for the new trend of distributed power generation systems and renewable energy sources in electric power systems. It covers the complete range of topics from fundamental concepts to major technologies as well as advanced topics for power consumers. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department -- to obtain the manual, send an email to [email protected]
Publisher: John Wiley & Sons
ISBN: 0471668834
Category : Technology & Engineering
Languages : en
Pages : 676
Book Description
This is a comprehensive textbook for the new trend of distributed power generation systems and renewable energy sources in electric power systems. It covers the complete range of topics from fundamental concepts to major technologies as well as advanced topics for power consumers. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department -- to obtain the manual, send an email to [email protected]
Design for Micro-Combined Cooling, Heating and Power Systems
Author: Nicolae Badea
Publisher: Springer
ISBN: 1447162544
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
This book provides a manual for the technical and structural design of systems for supplying decentralised energy in residential buildings. It presents the micro-combined cooling, heating & power systems Stirling engines & renewable energy sources (mCCHP-SE-RES) systems in an accessible manner both for the public at large, and for professionals who conceive, design or commercialise such systems or their components. The high performance levels of these systems are demonstrated within the final chapter by the results of an experiment in which a house is equipped with a mCCHP-SE-RES system. The reader is also familiarized with the conceptual, technical and legal aspects of modern domestic energy systems; the components that constitute these systems; and advanced algorithms for achieving the structural and technical design of such systems. In residential buildings, satisfying demands of durable development has gradually evolved from necessity to obligation and institutionalisation. Consequently a major paradigm change has appeared in the supply of energy to residential buildings, from the centralised production of energy using fossil fuels to the decentralised production of energy using local renewable sources. Furthermore, on the energy system market, energy micro systems which use renewable energy sources are increasingly commercialised. From among these, the mCCHP-SE-RES systems are particularly striking because they offer a high performance and they enhance the relationship between humans and the environment. This book is intended for postgraduate students of electrical engineering, applied mathematicians, and researchers of modelling and control of complex systems or power system technologies.
Publisher: Springer
ISBN: 1447162544
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
This book provides a manual for the technical and structural design of systems for supplying decentralised energy in residential buildings. It presents the micro-combined cooling, heating & power systems Stirling engines & renewable energy sources (mCCHP-SE-RES) systems in an accessible manner both for the public at large, and for professionals who conceive, design or commercialise such systems or their components. The high performance levels of these systems are demonstrated within the final chapter by the results of an experiment in which a house is equipped with a mCCHP-SE-RES system. The reader is also familiarized with the conceptual, technical and legal aspects of modern domestic energy systems; the components that constitute these systems; and advanced algorithms for achieving the structural and technical design of such systems. In residential buildings, satisfying demands of durable development has gradually evolved from necessity to obligation and institutionalisation. Consequently a major paradigm change has appeared in the supply of energy to residential buildings, from the centralised production of energy using fossil fuels to the decentralised production of energy using local renewable sources. Furthermore, on the energy system market, energy micro systems which use renewable energy sources are increasingly commercialised. From among these, the mCCHP-SE-RES systems are particularly striking because they offer a high performance and they enhance the relationship between humans and the environment. This book is intended for postgraduate students of electrical engineering, applied mathematicians, and researchers of modelling and control of complex systems or power system technologies.