Energy from the Nucleus

Energy from the Nucleus PDF Author: Gerard M. Crawley
Publisher: World Scientific Publishing Company
ISBN: 9789814689199
Category : Nuclear engineering
Languages : en
Pages : 243

Get Book Here

Book Description
Nuclear energy is important both as a very large energy resource and as a source of carbon free energy. However incidents such as the Fukashima Daiichi nuclear disaster (2011), the Chernobyl disaster (1986), and the Three Mile Island accident (1979) have cast doubts on the future of nuclear fission as a major player in the future energy mix. This volume provides an excellent overview of the current situation regarding nuclear fission as well as a description of the enormous potential advantages offered by nuclear fusion including an essentially unlimited fuel supply with minimal environmental impact. Energy from the Nucleus focuses on the two main approaches to producing energy from the nucleus: fission and fusion. The chapters on nuclear fission cover the status of current and future generations of reactors as well as new safety requirements and the environmental impact of electricity production from nuclear fission. The chapters on nuclear fusion discuss both inertial confinement fusion and magnetic confinement fusion, including the new international fusion test facility, ITER. The expertise of the authors, who are active participants in the respective technologies, ensures that the information provided is both reliable and current. Their views will no doubt enlighten our understanding of the future of energy from the nucleus.

Energy from the Nucleus

Energy from the Nucleus PDF Author: Gerard M. Crawley
Publisher: World Scientific Publishing Company
ISBN: 9789814689199
Category : Nuclear engineering
Languages : en
Pages : 243

Get Book Here

Book Description
Nuclear energy is important both as a very large energy resource and as a source of carbon free energy. However incidents such as the Fukashima Daiichi nuclear disaster (2011), the Chernobyl disaster (1986), and the Three Mile Island accident (1979) have cast doubts on the future of nuclear fission as a major player in the future energy mix. This volume provides an excellent overview of the current situation regarding nuclear fission as well as a description of the enormous potential advantages offered by nuclear fusion including an essentially unlimited fuel supply with minimal environmental impact. Energy from the Nucleus focuses on the two main approaches to producing energy from the nucleus: fission and fusion. The chapters on nuclear fission cover the status of current and future generations of reactors as well as new safety requirements and the environmental impact of electricity production from nuclear fission. The chapters on nuclear fusion discuss both inertial confinement fusion and magnetic confinement fusion, including the new international fusion test facility, ITER. The expertise of the authors, who are active participants in the respective technologies, ensures that the information provided is both reliable and current. Their views will no doubt enlighten our understanding of the future of energy from the nucleus.

Energy From The Nucleus: The Science And Engineering Of Fission And Fusion

Energy From The Nucleus: The Science And Engineering Of Fission And Fusion PDF Author: Gerard M Crawley
Publisher: World Scientific
ISBN: 9814689211
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
Nuclear energy is important both as a very large energy resource and as a source of carbon free energy. However incidents such as the Fukashima Daiichi nuclear disaster (2011), the Chernobyl disaster (1986), and the Three Mile Island accident (1979) have cast doubts on the future of nuclear fission as a major player in the future energy mix. This volume provides an excellent overview of the current situation regarding nuclear fission as well as a description of the enormous potential advantages offered by nuclear fusion including an essentially unlimited fuel supply with minimal environmental impact.Energy from the Nucleus focuses on the two main approaches to producing energy from the nucleus: fission and fusion. The chapters on nuclear fission cover the status of current and future generations of reactors as well as new safety requirements and the environmental impact of electricity production from nuclear fission. The chapters on nuclear fusion discuss both inertial confinement fusion and magnetic confinement fusion, including the new international fusion test facility, ITER. The expertise of the authors, who are active participants in the respective technologies, ensures that the information provided is both reliable and current. Their views will no doubt enlighten our understanding of the future of energy from the nucleus.

Energy from Nuclear Fusion

Energy from Nuclear Fusion PDF Author: DUNLAP
Publisher: IOP Publishing Limited
ISBN: 9780750333054
Category : Science
Languages : en
Pages : 190

Get Book Here

Book Description
Energy from Nuclear Fusion explores a range of issues relevant to the use of nuclear fusion as a potential solution to the energy problem. Prof. Dunlap assesses the viability of nuclear fusion as a component of our future energy mix, contextualising his discussion of nuclear fusion as an energy source through a comprehensive review of our current and future energy requirements. The book also considers alternatives to nuclear fusion alongside issues pertaining to the commercial application of nuclear-based solutions. Intended for upper-level undergraduate science and engineering students, as well as non-specialist graduate students and professionals looking for a scientifically-based overview of nuclear fusion power, Energy from Nuclear Fusion bridges the gap between descriptive texts and those intended for specialists, providing an accessible reference for anyone interested in nuclear fusion as a carbon-free energy solution. Key Features Provides a broad overview of the physics of fusion energy including both mainstream and alternative approaches Takes a rigorous scientific approach that is informative whilst remaining accessible to science/engineering students and researchers that are not specialists in the field Discusses energy from nuclear fusion in the context of our future energy needs and other alternative energy options Provides an objective discussion of the viability of nuclear fusion as a future source of energy Written by an experienced author of twelve other books

Fundamentals of Nuclear Science and Engineering

Fundamentals of Nuclear Science and Engineering PDF Author: J. Kenneth Shultis
Publisher: CRC Press
ISBN: 1439894086
Category : Science
Languages : en
Pages : 600

Get Book Here

Book Description
Since the publication of the bestselling first edition, there have been numerous advances in the field of nuclear science. In medicine, accelerator based teletherapy and electron-beam therapy have become standard. New demands in national security have stimulated major advances in nuclear instrumentation.An ideal introduction to the fundamentals of nuclear science and engineering, this book presents the basic nuclear science needed to understand and quantify an extensive range of nuclear phenomena. New to the Second Edition— A chapter on radiation detection by Douglas McGregor Up-to-date coverage of radiation hazards, reactor designs, and medical applications Flexible organization of material that allows for quick reference This edition also takes an in-depth look at particle accelerators, nuclear fusion reactions and devices, and nuclear technology in medical diagnostics and treatment. In addition, the author discusses applications such as the direct conversion of nuclear energy into electricity. The breadth of coverage is unparalleled, ranging from the theory and design characteristics of nuclear reactors to the identification of biological risks associated with ionizing radiation. All topics are supplemented with extensive nuclear data compilations to perform a wealth of calculations. Providing extensive coverage of physics, nuclear science, and nuclear technology of all types, this up-to-date second edition of Fundamentals of Nuclear Science and Engineering is a key reference for any physicists or engineer.

Magnetic Fusion Technology

Magnetic Fusion Technology PDF Author: Thomas J. Dolan
Publisher: Springer Science & Business Media
ISBN: 1447155564
Category : Technology & Engineering
Languages : en
Pages : 816

Get Book Here

Book Description
Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Nuclear Fusion

Nuclear Fusion PDF Author: Igor Girka
Publisher: BoD – Books on Demand
ISBN: 1789857872
Category : Science
Languages : en
Pages : 116

Get Book Here

Book Description
Power production and its consumption and distribution are among the most urgent problems of mankind. Despite positive dynamics in introducing renewable sources of energy, nuclear power plants still remain the major source of carbon-free electric energy. Fusion can be an alternative to fission in the foreseeable future. Research in the field of controlled nuclear fusion has been ongoing for almost 100 years. Magnetic confinement systems are the most promising for effective implementation, and the International Thermonuclear Experimental Reactor is under construction in France. To accomplish nuclear fusion on Earth, we have to resolve a number of scientific and technological problems. This monograph includes selected chapters on nuclear physics and mechanical engineering within the scope of nuclear fusion.

Structural Physics of Nuclear Fusion

Structural Physics of Nuclear Fusion PDF Author: Stoyan Sarg
Publisher: Createspace Independent Pub
ISBN: 9781482620030
Category : Science
Languages : en
Pages : 212

Get Book Here

Book Description
Remarkable advances in cold fusion experiments have raised the hope for a safer and cheaper nuclear energy. The results, however, cannot be explained from the point of view of current physical understanding of nuclear fusion. This is an obstacle to endorsement and investment in this field. The research needs a supporting theory. The present book suggests a new approach for analysis of the results and offers practical recommendations based on the physical models of atomic nuclei derived in the BSM-Supergravitation Unified theory (BSM-SG). The book provides: (1) a method for analysis of the LENR experiments using the BSM-SG atomic models; (b) a selection of isotopes suitable for a more efficient energy yield with a minimum of radioactive byproducts; (c) practical considerations for selection of the technical method and the reaction environment.The BSM-SG theory is based on a concept of space that follows the view of Michael Faraday and the recommendations of James Maxwell about the properties of the envisioned space medium, known as Aether. The concept of an Aether (Ether) was abandoned in favor of the quantum mechanical formalism adopted in the first quarter of 20th century. However, Albert Einstein was against this approach and openly expressed his concerns after he developed General Relativity. In his monograph “Sidelights on relativity” (1921) he wrote: “To deny the ether is ultimately to assume that empty space has no physical qualities whatever” (p.23) and “According to general theory of relativity space without ether is unthinkable” (p. 23).From our point of view, the major problem for recognition of the feasibility of LENR is the adopted quantum mechanical formalism. In quantum mechanics and particles physics, all elementary and subelementary particles are assumed spherical without any geometrical structure. Then the data interpretation of scattering experiments leads to a very small atomic nucleus on the order of a femtometer. This leads to a conclusion of a very strong Coulomb barrier that might be overcome only at temperatures of millions of degrees. The results from LENR experiments are in a sharp contrast to this consideration. According to BSM-SG theory, the physical models of protons and neutrons have superdense material structures with the shape of a folded and a twisted torus, respectively. They are much larger but thinner, so the Coulomb barrier also has a non-spherical shape and it is not so strong. The protons and neutrons are held in the nucleus by a Supergravitational (SG) field, which is behind the strong nuclear forces. The protons and neutrons in the atomic nuclei form three-dimensional fractal structures. The spatial geometry of the nuclear structures defines the row-column pattern of the periodic table with identifiable features of the valences, isotope stability, nuclear spin and chemical bond directions. The analysis leads to a hypothesis that the superdense nucleus causes a micro-curvature – a general relativistic effect around the nucleus. It has a feature of energy storage that corresponds to the mass deficit or nuclear binding energy expressed by Einstein's equation, E = mc^2. The fusion or fission reaction causes a small change of the micro-curvature, so the difference in the binding energy is released as gamma and particle radiation that is finally converted to heat.The analysis of some LENR experiments shows that the excited state of hydrogen and deuterium, known as the Rydberg state, facilitates some fusion reactions. According to BSM-SG, the Rydberg state is an ion-electron pair, with a finite size at the boundary of the SG field, while possessing a strong magnetic field due to the dominated magnetic moment of the electron. Additionally, the anomalous magnetic moment of the electron provides a constant driving momentum. When combined with a proper nuclear spin state of a selected heavier element, this momentum assists the magnetic field interactions, and this leads to nuclear fusion.

Renewable Energies and CO2

Renewable Energies and CO2 PDF Author: Ricardo Guerrero-Lemus
Publisher: Springer Science & Business Media
ISBN: 1447143841
Category : Business & Economics
Languages : en
Pages : 397

Get Book Here

Book Description
Providing up-to-date numerical data across a range of topics related to renewable energy technologies, Renewable Energies and CO2 offers a one-stop source of key information to engineers, economists and all other professionals working in the energy and climate change sectors. The most relevant up-to-date numerical data are exposed in 201 tables and graphs, integrated in terms of units and methodology, and covering topics such as energy system capacities and lifetimes, production costs, energy payback ratios, carbon emissions, external costs, patents and literature statistics. The data are first presented and then analyzed to project potential future grid, heat and fuel parity scenarios, as well as future technology tendencies in different energy technological areas. Innovative highlights and descriptions of preproduction energy systems and components from the past four years have been gathered from selected journals and international energy departments from G20 countries. As the field develops, readers are invited and encouraged to contact the authors for feedback and comments. The ongoing data collection and analysis will be used – after proper acknowledgment of contributors - to develop new editions. In this way, it is ensured that Renewable Energies and CO2 will remain an up-to-date resource for all those working with or involved in renewable energy, climate change, energy storage, carbon capture and smart grids.

Assessment of Inertial Confinement Fusion Targets

Assessment of Inertial Confinement Fusion Targets PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309270626
Category : Science
Languages : en
Pages : 119

Get Book Here

Book Description
In the fall of 2010, the Office of the U.S. Department of Energy's (DOE's) Secretary for Science asked for a National Research Council (NRC) committee to investigate the prospects for generating power using inertial confinement fusion (ICF) concepts, acknowledging that a key test of viability for this concept-ignition -could be demonstrated at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in the relatively near term. The committee was asked to provide an unclassified report. However, DOE indicated that to fully assess this topic, the committee's deliberations would have to be informed by the results of some classified experiments and information, particularly in the area of ICF targets and nonproliferation. Thus, the Panel on the Assessment of Inertial Confinement Fusion Targets ("the panel") was assembled, composed of experts able to access the needed information. The panel was charged with advising the Committee on the Prospects for Inertial Confinement Fusion Energy Systems on these issues, both by internal discussion and by this unclassified report. A Panel on Fusion Target Physics ("the panel") will serve as a technical resource to the Committee on Inertial Confinement Energy Systems ("the Committee") and will prepare a report that describes the R&D challenges to providing suitable targets, on the basis of parameters established and provided to the Panel by the Committee. The Panel on Fusion Target Physics will prepare a report that will assess the current performance of fusion targets associated with various ICF concepts in order to understand: 1. The spectrum output; 2. The illumination geometry; 3. The high-gain geometry; and 4. The robustness of the target design. The panel addressed the potential impacts of the use and development of current concepts for Inertial Fusion Energy on the proliferation of nuclear weapons information and technology, as appropriate. The Panel examined technology options, but does not provide recommendations specific to any currently operating or proposed ICF facility.

Nuclear Power Safety

Nuclear Power Safety PDF Author: James H. Rust
Publisher: Elsevier
ISBN: 1483285448
Category : Technology & Engineering
Languages : en
Pages : 419

Get Book Here

Book Description
A concise and current treatment of the subject of nuclear power safety, this work addresses itself to such issues of public concern as: radioactivity in routine effluents and its effect on human health and the environment, serious reactor accidents and their consequences, transportation accidents involving radioactive waste, the disposal of radioactive waste, particularly high-level wastes, and the possible theft of special nuclear materials and their fabrication into a weapon by terrorists. The implementation of the defense-in-depth concept of nuclear power safety is also discussed. Of interest to all undergraduate and graduate students of nuclear engineering, this work assumes a basic understanding of scientific and engineering principles and some familiarity with nuclear power reactors