Energy Efficiency and Carbon Dioxide Emissions Reduction Opportunities in the U.S. Cement Industry

Energy Efficiency and Carbon Dioxide Emissions Reduction Opportunities in the U.S. Cement Industry PDF Author: Nathan Martin
Publisher:
ISBN:
Category : Carbon dioxide mitigation
Languages : en
Pages : 39

Get Book Here

Book Description

Energy Efficiency and Carbon Dioxide Emissions Reduction Opportunities in the U.S. Cement Industry

Energy Efficiency and Carbon Dioxide Emissions Reduction Opportunities in the U.S. Cement Industry PDF Author: Nathan Martin
Publisher:
ISBN:
Category : Carbon dioxide mitigation
Languages : en
Pages : 39

Get Book Here

Book Description


Energy Efficiency and Carbon Dioxide Emissions Reduction Opportunities in the U.S. Cement Industry

Energy Efficiency and Carbon Dioxide Emissions Reduction Opportunities in the U.S. Cement Industry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 43

Get Book Here

Book Description
This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%, from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

Energy Efficiency Improvement Opportunities for the Cement Industry

Energy Efficiency Improvement Opportunities for the Cement Industry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 46

Get Book Here

Book Description
This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this report is based on publicly-available reports, journal articles, and case studies from applications of technologies around the world.

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO2) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO2 emissions. Development of new energy-efficiency and CO2 emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO2 emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

Energy and Emission Reduction Opportunities for the Cement Industry

Energy and Emission Reduction Opportunities for the Cement Industry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This report describes the cement industry and its technology. It provides background information necessary to develop realistic work plans to reduce energy usage and to lower CO2 emissions.

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Get Book Here

Book Description
China's annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world's annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

Energy Efficiency and Carbon Dioxide Emissions Reduction Opportunities in the U.S. Iron and Steel Sector

Energy Efficiency and Carbon Dioxide Emissions Reduction Opportunities in the U.S. Iron and Steel Sector PDF Author: Ernst Worrell
Publisher:
ISBN:
Category : Carbon dioxide mitigation
Languages : en
Pages : 104

Get Book Here

Book Description


Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Scenarios of U.S. Carbon Reductions

Scenarios of U.S. Carbon Reductions PDF Author:
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 266

Get Book Here

Book Description


Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total technical fuel efficiency potential equal to 7,949 terajoules (TJ), accounting for 8% of total fuel used in the studied cement plants in 2008. All the fuel efficiency potential is shown to be cost effective. Carbon dioxide (CO2) emission reduction potential associated with cost-effective electricity saving is 383 kiloton (kt) CO2, while total technical potential for CO2 emission reduction from electricity-saving is 940 ktCO2. The CO2 emission reduction potentials associated with fuel-saving potentials is 950 ktCO2.