Author: DC Bell
Publisher: Garland Science
ISBN: 1135331391
Category : Science
Languages : en
Pages : 270
Book Description
This book provides an in-depth description of x-ray microanalysis in the electron microscope. It is sufficiently detailed to ensure that novices will understand the nuances of high-quality EDX analysis. Includes information about hardware design as well as the physics of x-ray generation, absorption and detection, and most post-detection data processing. Details on electron optics and electron probe formation allow the novice to make sensible adjustments to the electron microscope in order to set up a system which optimises analysis. It also helps the reader determine which microanalytical method is more suitable for their planned application.
Energy Dispersive X-ray Analysis in the Electron Microscope
Author: DC Bell
Publisher: Garland Science
ISBN: 1135331391
Category : Science
Languages : en
Pages : 270
Book Description
This book provides an in-depth description of x-ray microanalysis in the electron microscope. It is sufficiently detailed to ensure that novices will understand the nuances of high-quality EDX analysis. Includes information about hardware design as well as the physics of x-ray generation, absorption and detection, and most post-detection data processing. Details on electron optics and electron probe formation allow the novice to make sensible adjustments to the electron microscope in order to set up a system which optimises analysis. It also helps the reader determine which microanalytical method is more suitable for their planned application.
Publisher: Garland Science
ISBN: 1135331391
Category : Science
Languages : en
Pages : 270
Book Description
This book provides an in-depth description of x-ray microanalysis in the electron microscope. It is sufficiently detailed to ensure that novices will understand the nuances of high-quality EDX analysis. Includes information about hardware design as well as the physics of x-ray generation, absorption and detection, and most post-detection data processing. Details on electron optics and electron probe formation allow the novice to make sensible adjustments to the electron microscope in order to set up a system which optimises analysis. It also helps the reader determine which microanalytical method is more suitable for their planned application.
Scanning Electron Microscopy and X-Ray Microanalysis
Author: Joseph Goldstein
Publisher: Springer Science & Business Media
ISBN: 1461332737
Category : Science
Languages : en
Pages : 679
Book Description
This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.
Publisher: Springer Science & Business Media
ISBN: 1461332737
Category : Science
Languages : en
Pages : 679
Book Description
This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.
Failure Analysis of Integrated Circuits
Author: Lawrence C. Wagner
Publisher: Springer Science & Business Media
ISBN: 1461549191
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
This "must have" reference work for semiconductor professionals and researchers provides a basic understanding of how the most commonly used tools and techniques in silicon-based semiconductors are applied to understanding the root cause of electrical failures in integrated circuits.
Publisher: Springer Science & Business Media
ISBN: 1461549191
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
This "must have" reference work for semiconductor professionals and researchers provides a basic understanding of how the most commonly used tools and techniques in silicon-based semiconductors are applied to understanding the root cause of electrical failures in integrated circuits.
Analytical Electron Microscopy for Materials Science
Author: DAISUKE Shindo
Publisher: Springer Science & Business Media
ISBN: 4431669884
Category : Science
Languages : en
Pages : 162
Book Description
Analytical electron microscopy is one of the most powerful tools today for characterization of the advanced materials that support the nanotechnology of the twenty-first century. In this book the authors clearly explain both the basic principles and the latest developments in the field. In addition to a fundamental description of the inelastic scattering process, an explanation of the constituent hardware is provided. Standard quantitative analytical techniques employing electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are also explained, along with elemental mapping techniques. Included are sections on convergent beam electron diffraction and electron holography utilizing the field emission gun. With generous use of illustrations and experimental data, this book is a valuable resource for anyone concerned with materials characterization, electron microscopy, materials science, crystallography, and instrumentation.
Publisher: Springer Science & Business Media
ISBN: 4431669884
Category : Science
Languages : en
Pages : 162
Book Description
Analytical electron microscopy is one of the most powerful tools today for characterization of the advanced materials that support the nanotechnology of the twenty-first century. In this book the authors clearly explain both the basic principles and the latest developments in the field. In addition to a fundamental description of the inelastic scattering process, an explanation of the constituent hardware is provided. Standard quantitative analytical techniques employing electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are also explained, along with elemental mapping techniques. Included are sections on convergent beam electron diffraction and electron holography utilizing the field emission gun. With generous use of illustrations and experimental data, this book is a valuable resource for anyone concerned with materials characterization, electron microscopy, materials science, crystallography, and instrumentation.
Energy Dispersive Spectrometry of Common Rock Forming Minerals
Author: Kenneth P. Severin
Publisher: Springer Science & Business Media
ISBN: 1402028415
Category : Science
Languages : en
Pages : 228
Book Description
This book provides a very basic introduction to electron microscopy and energy dispersive spectrometry (EDS). It has the largest compiled collection of EDS spectra ever published and covers most common rock forming minerals. In addition, it provides a key to help the novice wade through the large number of spectra.
Publisher: Springer Science & Business Media
ISBN: 1402028415
Category : Science
Languages : en
Pages : 228
Book Description
This book provides a very basic introduction to electron microscopy and energy dispersive spectrometry (EDS). It has the largest compiled collection of EDS spectra ever published and covers most common rock forming minerals. In addition, it provides a key to help the novice wade through the large number of spectra.
Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis
Author: Patrick Echlin
Publisher: Springer Science & Business Media
ISBN: 0387857311
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging and analysis. With a few notable exceptions, most specimens destined for study in the SEM are poor conductors and composed of beam sensitive light elements containing variable amounts of water. In the SEM, the imaging system depends on the specimen being sufficiently electrically conductive to ensure that the bulk of the incoming electrons go to ground. The formation of the image depends on collecting the different signals that are scattered as a consequence of the high energy beam interacting with the sample. Backscattered electrons and secondary electrons are generated within the primary beam-sample interactive volume and are the two principal signals used to form images. The backscattered electron coefficient ( ? ) increases with increasing atomic number of the specimen, whereas the secondary electron coefficient ( ? ) is relatively insensitive to atomic number. This fundamental diff- ence in the two signals can have an important effect on the way samples may need to be prepared. The analytical system depends on collecting the x-ray photons that are generated within the sample as a consequence of interaction with the same high energy beam of primary electrons used to produce images.
Publisher: Springer Science & Business Media
ISBN: 0387857311
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging and analysis. With a few notable exceptions, most specimens destined for study in the SEM are poor conductors and composed of beam sensitive light elements containing variable amounts of water. In the SEM, the imaging system depends on the specimen being sufficiently electrically conductive to ensure that the bulk of the incoming electrons go to ground. The formation of the image depends on collecting the different signals that are scattered as a consequence of the high energy beam interacting with the sample. Backscattered electrons and secondary electrons are generated within the primary beam-sample interactive volume and are the two principal signals used to form images. The backscattered electron coefficient ( ? ) increases with increasing atomic number of the specimen, whereas the secondary electron coefficient ( ? ) is relatively insensitive to atomic number. This fundamental diff- ence in the two signals can have an important effect on the way samples may need to be prepared. The analytical system depends on collecting the x-ray photons that are generated within the sample as a consequence of interaction with the same high energy beam of primary electrons used to produce images.
Compendium of Surface and Interface Analysis
Author: The Surface Science Society of Japan
Publisher: Springer
ISBN: 9811061564
Category : Technology & Engineering
Languages : en
Pages : 807
Book Description
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
Publisher: Springer
ISBN: 9811061564
Category : Technology & Engineering
Languages : en
Pages : 807
Book Description
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
Electron Microprobe Analysis and Scanning Electron Microscopy in Geology
Author: S. J. B. Reed
Publisher: Cambridge University Press
ISBN: 113944638X
Category : Science
Languages : en
Pages : 232
Book Description
Originally published in 2005, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms a comprehensive text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.
Publisher: Cambridge University Press
ISBN: 113944638X
Category : Science
Languages : en
Pages : 232
Book Description
Originally published in 2005, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms a comprehensive text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.
Materials Characterization
Author: Yang Leng
Publisher: John Wiley & Sons
ISBN: 0470822996
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.
Publisher: John Wiley & Sons
ISBN: 0470822996
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.
Electron Nano-Imaging
Author: Nobuo Tanaka
Publisher: Springer
ISBN: 4431565027
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
In this book, the bases of imaging and diffraction in transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are explained in the style of a textbook. The book focuses on the explanation of electron microscopic imaging of TEM and STEM without including in the main text distracting information on basic knowledge of crystal diffraction, wave optics, electron lens, and scattering and diffraction theories, which are explained separately in the appendices. A comprehensive explanation is provided on the basis of Fourier transform theory, and this approach is unique in comparison with other advanced resources on high-resolution electron microscopy. With the present textbook, readers are led to understand the essence of the imaging theories of TEM and STEM without being diverted by other knowledge of electron microscopy. The up-to-date information in this book, particularly on imaging details of STEM and aberration corrections, is valuable worldwide for today’s graduate students and professionals just starting their careers.
Publisher: Springer
ISBN: 4431565027
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
In this book, the bases of imaging and diffraction in transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are explained in the style of a textbook. The book focuses on the explanation of electron microscopic imaging of TEM and STEM without including in the main text distracting information on basic knowledge of crystal diffraction, wave optics, electron lens, and scattering and diffraction theories, which are explained separately in the appendices. A comprehensive explanation is provided on the basis of Fourier transform theory, and this approach is unique in comparison with other advanced resources on high-resolution electron microscopy. With the present textbook, readers are led to understand the essence of the imaging theories of TEM and STEM without being diverted by other knowledge of electron microscopy. The up-to-date information in this book, particularly on imaging details of STEM and aberration corrections, is valuable worldwide for today’s graduate students and professionals just starting their careers.