Encounters with Euclid

Encounters with Euclid PDF Author: Benjamin Wardhaugh
Publisher: Princeton University Press
ISBN: 0691235767
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
A sweeping cultural history of one of the most influential mathematical books ever written Euclid's Elements of Geometry is one of the fountainheads of mathematics—and of culture. Written around 300 BCE, it has traveled widely across the centuries, generating countless new ideas and inspiring such figures as Isaac Newton, Bertrand Russell, Abraham Lincoln, and Albert Einstein. Encounters with Euclid tells the story of this incomparable mathematical masterpiece, taking readers from its origins in the ancient world to its continuing influence today. In this lively and informative book, Benjamin Wardhaugh explains how Euclid’s text journeyed from antiquity to the Renaissance, introducing some of the many readers, copyists, and editors who left their mark on the Elements before handing it on. He shows how some read the book as a work of philosophy, while others viewed it as a practical guide to life. He examines the many different contexts in which Euclid's book and his geometry were put to use, from the Neoplatonic school at Athens and the artisans' studios of medieval Baghdad to the Jesuit mission in China and the workshops of Restoration London. Wardhaugh shows how the Elements inspired ideas in theology, art, and music, and how the book has acquired new relevance to the strange geometries of dark matter and curved space. Encounters with Euclid traces the life and afterlives of one of the most remarkable works of mathematics ever written, revealing its lasting role in the timeless search for order and reason in an unruly world.

Encounters with Euclid

Encounters with Euclid PDF Author: Benjamin Wardhaugh
Publisher: Princeton University Press
ISBN: 0691235767
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
A sweeping cultural history of one of the most influential mathematical books ever written Euclid's Elements of Geometry is one of the fountainheads of mathematics—and of culture. Written around 300 BCE, it has traveled widely across the centuries, generating countless new ideas and inspiring such figures as Isaac Newton, Bertrand Russell, Abraham Lincoln, and Albert Einstein. Encounters with Euclid tells the story of this incomparable mathematical masterpiece, taking readers from its origins in the ancient world to its continuing influence today. In this lively and informative book, Benjamin Wardhaugh explains how Euclid’s text journeyed from antiquity to the Renaissance, introducing some of the many readers, copyists, and editors who left their mark on the Elements before handing it on. He shows how some read the book as a work of philosophy, while others viewed it as a practical guide to life. He examines the many different contexts in which Euclid's book and his geometry were put to use, from the Neoplatonic school at Athens and the artisans' studios of medieval Baghdad to the Jesuit mission in China and the workshops of Restoration London. Wardhaugh shows how the Elements inspired ideas in theology, art, and music, and how the book has acquired new relevance to the strange geometries of dark matter and curved space. Encounters with Euclid traces the life and afterlives of one of the most remarkable works of mathematics ever written, revealing its lasting role in the timeless search for order and reason in an unruly world.

Encounters with Euclid

Encounters with Euclid PDF Author: Benjamin Wardhaugh
Publisher: Princeton University Press
ISBN: 0691211698
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
In this lively and informative book, Benjamin Wardhaugh explains how Euclid's text journeyed from antiquity to the Renaissance, introducing some of the many readers, copyists, and editors who left their mark on the Elements before handing it on. He shows how some read the book as a work of philosophy, while others viewed it as a practical guide to life. He examines the many different contexts in which Euclid's book and his geometry were put to use, from the Neoplatonic school at Athens and the artisans' studios of medieval Baghdad to the Jesuit mission in China and the workshops of Restoration London. Wardhaugh shows how the Elements inspired ideas in theology, art, and music, and how the book has acquired new relevance to the strange geometries of dark matter and curved space.

Encounters with Euclid: How an Ancient Greek Geometry Text Shaped the World

Encounters with Euclid: How an Ancient Greek Geometry Text Shaped the World PDF Author: Benjamin Wardhaugh
Publisher: HarperCollins UK
ISBN: 0008299927
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
‘An astonishingly readable and informative history of the greatest mathematical bestseller of all time ... The writing is vivid and the stories are gripping. Highly recommended ’ IAN STEWART, AUTHOR OF SIGNIFICANT FIGURES

The Book of Wonders

The Book of Wonders PDF Author: Benjamin Wardhaugh
Publisher: William Collins
ISBN: 9780008299903
Category :
Languages : en
Pages : 336

Get Book Here

Book Description
Euclid's Elements of Geometry was a book that changed the world. In a sweeping history, Benjamin Wardhaugh traces how an ancient Greek text on mathematics - often hailed as the world's first textbook - shaped two thousand years of art, philosophy and literature, as well as science and maths. Thirteen volumes of mathematical definitions, propositions and proofs. Writing in 300 BC, Euclid could not have known his logic would go unsurpassed until the nineteenth century, or that his writings were laying down the very foundations of human knowledge. Wardhaugh blasts the dust from Euclid's legacy to offer not only a vibrant history of mathematics, told through people and invention, but also a broader story of culture. Telling stories from every continent, ranging between Ptolemy and Isaac Newton, Hobbes and Lewis Carrol, this is a history that dives from Ancient Greece to medieval Byzantium, early modern China, Renaissance Italy, the age of European empires, and our world today. How has geometry sat at the beating heart of sculpture, literature, music and thought? How can one unknowable figure of antiquity live through two millennia?

Euclid in the Rainforest

Euclid in the Rainforest PDF Author: Joseph Mazur
Publisher: Penguin
ISBN: 0452287839
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
Like Douglas Hofstadter’s Gödel, Escher, Bach, and David Berlinski’s A Tour of the Calculus, Euclid in the Rainforest combines the literary with the mathematical to explore logic—the one indispensable tool in man’s quest to understand the world. Underpinning both math and science, it is the foundation of every major advancement in knowledge since the time of the ancient Greeks. Through adventure stories and historical narratives populated with a rich and quirky cast of characters, Mazur artfully reveals the less-than-airtight nature of logic and the muddled relationship between math and the real world. Ultimately, Mazur argues, logical reasoning is not purely robotic. At its most basic level, it is a creative process guided by our intuitions and beliefs about the world.

Berkeley Lectures on P-adic Geometry

Berkeley Lectures on P-adic Geometry PDF Author: Peter Scholze
Publisher: Princeton University Press
ISBN: 0691202095
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.

Commensurabilities Among Lattices in PU (1,n)

Commensurabilities Among Lattices in PU (1,n) PDF Author: Pierre Deligne
Publisher: Princeton University Press
ISBN: 9780691000961
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable.

Encounters with Euclid

Encounters with Euclid PDF Author: Benjamin Wardhaugh
Publisher: Princeton University Press
ISBN: 0691219818
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
A sweeping cultural history of one of the most influential mathematical books ever written Euclid's Elements of Geometry is one of the fountainheads of mathematics—and of culture. Written around 300 BCE, it has traveled widely across the centuries, generating countless new ideas and inspiring such figures as Isaac Newton, Bertrand Russell, Abraham Lincoln, and Albert Einstein. Encounters with Euclid tells the story of this incomparable mathematical masterpiece, taking readers from its origins in the ancient world to its continuing influence today. In this lively and informative book, Benjamin Wardhaugh explains how Euclid’s text journeyed from antiquity to the Renaissance, introducing some of the many readers, copyists, and editors who left their mark on the Elements before handing it on. He shows how some read the book as a work of philosophy, while others viewed it as a practical guide to life. He examines the many different contexts in which Euclid's book and his geometry were put to use, from the Neoplatonic school at Athens and the artisans' studios of medieval Baghdad to the Jesuit mission in China and the workshops of Restoration London. Wardhaugh shows how the Elements inspired ideas in theology, art, and music, and how the book has acquired new relevance to the strange geometries of dark matter and curved space. Encounters with Euclid traces the life and afterlives of one of the most remarkable works of mathematics ever written, revealing its lasting role in the timeless search for order and reason in an unruly world.

Selectors

Selectors PDF Author: John E. Jayne
Publisher: Princeton University Press
ISBN: 1400825121
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
Though the search for good selectors dates back to the early twentieth century, selectors play an increasingly important role in current research. This book is the first to assemble the scattered literature into a coherent and elegant presentation of what is known and proven about selectors--and what remains to be found. The authors focus on selection theorems that are related to the axiom of choice, particularly selectors of small Borel or Baire classes. After examining some of the relevant work of Michael and Kuratowski & Ryll-Nardzewski and presenting background material, the text constructs selectors obtained as limits of functions that are constant on the sets of certain partitions of metric spaces. These include selection theorems for maximal monotone maps, for the subdifferential of a continuous convex function, and for some geometrically defined maps, namely attainment and nearest-point maps. Assuming only a basic background in analysis and topology, this book is ideal for graduate students and researchers who wish to expand their general knowledge of selectors, as well as for those who seek the latest results.

Visual Differential Geometry and Forms

Visual Differential Geometry and Forms PDF Author: Tristan Needham
Publisher: Princeton University Press
ISBN: 0691203709
Category : Mathematics
Languages : en
Pages : 530

Get Book Here

Book Description
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.