Embedded Purification for Electron Beam Induced Pt Deposition Using MeCpPtMe3

Embedded Purification for Electron Beam Induced Pt Deposition Using MeCpPtMe3 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Embedded Purification for Electron Beam Induced Pt Deposition Using MeCpPtMe3

Embedded Purification for Electron Beam Induced Pt Deposition Using MeCpPtMe3 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Domain Walls

Domain Walls PDF Author: Dennis Meier
Publisher: Oxford University Press
ISBN: 0192607413
Category : Science
Languages : en
Pages : 288

Get Book Here

Book Description
Technological evolution and revolution are both driven by the discovery of new functionalities, new materials and the design of yet smaller, faster, and more energy-efficient components. Progress is being made at a breathtaking pace, stimulated by the rapidly growing demand for more powerful and readily available information technology. High-speed internet and data-streaming, home automation, tablets and smartphones are now "necessities" for our everyday lives. Consumer expectations for progressively more data storage and exchange appear to be insatiable. Oxide electronics is a promising and relatively new field that has the potential to trigger major advances in information technology. Oxide interfaces are particularly intriguing. Here, low local symmetry combined with an increased susceptibility to external fields leads to unusual physical properties distinct from those of the homogeneous bulk. In this context, ferroic domain walls have attracted recent attention as a completely new type of oxide interface. In addition to their functional properties, such walls are spatially mobile and can be created, moved, and erased on demand. This unique degree of flexibility enables domain walls to take an active role in future devices and hold a great potential as multifunctional 2D systems for nanoelectronics. With domain walls as reconfigurable electronic 2D components, a new generation of adaptive nano-technology and flexible circuitry becomes possible, that can be altered and upgraded throughout the lifetime of the device. Thus, what started out as fundamental research, at the limit of accessibility, is finally maturing into a promising concept for next-generation technology.

Physico-chemical Study of the Focused Electron Beam Induced Deposition Process

Physico-chemical Study of the Focused Electron Beam Induced Deposition Process PDF Author: Tristan Bret
Publisher:
ISBN:
Category :
Languages : en
Pages : 220

Get Book Here

Book Description


Sub-10 Nm Focused Electron Beam Induced Deposition

Sub-10 Nm Focused Electron Beam Induced Deposition PDF Author: Willem Frederik van Dorp
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Experimental, Theoretical, and Device Application Development of Nanoscale Focused Electron-beam-induced Deposition

Experimental, Theoretical, and Device Application Development of Nanoscale Focused Electron-beam-induced Deposition PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 200

Get Book Here

Book Description
To elucidate the effects of beam heating in electron beam-induced deposition (EBID), a Monte-Carlo electron-solid interaction model has been employed to calculate the energy deposition profiles in bulk and nanostructured SiO2. Using these profiles, a finite element model was used to predict the nanostructure tip temperatures for standard experimental EBID conditions. Depending on the beam energy, beam current, and nanostructure geometry, the heat generated can be substantial. This heat source can subsequently limit the EBID growth by thermally reducing the mean stay time of the precursor gas. Temperature dependent EBID growth experiments qualitatively verified the results of the electron beam-heating model. Additionally, experimental trends for the growth rate as a function of deposition time supported the conclusion that electron beam-induced heating can play a major role in limiting the EBID growth rate of SiO2 nanostructures. In an EBID application development, two approaches to maskless, direct-write lithography using electron beam-induced deposition (EBID) to produce ultra-thin masking layers were investigated. A single layer process used directly written SiO[subscript x] features deposited from a tetraethoxysilane (TEOS) precursor vapor as a masking layer for amorphous silicon thin films. A bilayer process implemented a secondary masking layer consisting of standard photoresist into which a pattern--directly written by EBID tungsten from WF6 precursor--was transferred. The single layer process was found to be extremely sensitive to the etch selectivity of the plasma etch. As a result, patterns were successfully transferred into silicon, but only to a minimal depth. In the bilayer process, EBID tungsten was written onto photoresist and the pattern transferred by means of an oxygen plasma dry development. A brief refractory descum plasma etch was implemented to remove the peripheral tungsten contamination prior to the development process. Conditions were developed to reduce the spatial spread of electrons in the photoresist layer and obtain minimal linewidths, which enabled patterning of [sim] 35 nm lines. Additionally, an EBID-based technique for field emitter repair was applied to the Digital Electrostatically focused e-beam Array Lithography (DEAL) parallel electron beam lithography configuration. Damaged or missing carbon nanofiber (CNF) emitters are very common in these prototype devices, so there is a need for a deterministic repair process. Relatively carbon-free, high aspect ratio tungsten nanofibers were deposited from a WF6 precursor in a gated cathode and a damaged triode (DEAL) device. The I-V response of the devices during vacuum FE testing indicated stable, cold field emission from the EBID cathodes. The field emission threshold voltage was shown to decrease from -130 V to -90 V after a short initiation period. Finally, lithography was performed using the repaired device to write a series of lines in PMMA with variable focus voltage. Successful focusing of the beam with increased focus voltage was evident in the patterned and developed PMMA. The I-V and lithography results were comparable to CNF-based DEAL devices indicating a successful repair technique.

Atomic Layer Deposition for Semiconductors

Atomic Layer Deposition for Semiconductors PDF Author: Cheol Seong Hwang
Publisher: Springer Science & Business Media
ISBN: 146148054X
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Low-Energy Electrons

Low-Energy Electrons PDF Author: Oddur Ingólfsson
Publisher: CRC Press
ISBN: 0429602766
Category : Science
Languages : en
Pages : 274

Get Book Here

Book Description
Low-energy electrons are ubiquitous in nature and play an important role in natural phenomena as well as many potential and current industrial processes. Authored by 16 active researchers, this book describes the fundamental characteristics of low-energy electron–molecule interactions and their role in different fields of science and technology, including plasma processing, nanotechnology, and health care, as well as astro- and atmospheric physics and chemistry. The book is packed with illustrative examples, from both fundamental and application sides, features about 130 figures, and lists over 800 references. It may serve as an advanced graduate-level study course material where selected chapters can be used either individually or in combination as a basis to highlight and study specific aspects of low-energy electron–molecule interactions. It is also directed at researchers in the fields of plasma physics, nanotechnology, and radiation damage to biologically relevant material (such as in cancer therapy), especially those with an interest in high-energy-radiation-induced processes, from both an experimental and a theoretical point of view.

The Chemistry of Metal CVD

The Chemistry of Metal CVD PDF Author: Toivo T. Kodas
Publisher: John Wiley & Sons
ISBN: 3527615849
Category : Technology & Engineering
Languages : en
Pages : 562

Get Book Here

Book Description
High purity, thin metal coatings have a variety of important commercial applications, for example, in the microelectronics industry, as catalysts, as protective and decorative coatings as well as in gas-diffusion barriers. This book offers detailed, up- to-date coverage of the chemistry behind the vapor deposition of different metals from organometallic precursors. In nine chapters, the CVD of metals including aluminum, tungsten, gold, silver, platinum, palladium, nickel, as well as copper from copper(I) and copper(II) compounds is covered. The synthesis and properties of the precursors, the growth process, morphology, quality and adhesion of the resulting films as well as laser- assisted, ion- assisted and plasma-assisted methods are discussed. Present applications and prospects for future developments are summarized. With ca. 1000 references and a glossary, this book is a unique source of in-depth information. It is indispensable for chemists, physicists, engineers and materials scientists working with metal- coating processes and technologies. From Reviews: 'I highly recommend this book to anyone interested in learning more about the chemistry of metal CVD.' J. Am Chem. Soc.

Nanofabrication

Nanofabrication PDF Author: José María de Teresa
Publisher:
ISBN: 9780750326087
Category : Nanolithography
Languages : en
Pages : 0

Get Book Here

Book Description
A comprehensive edited volume on important and up-to-date nanolithography techniques and applications. The book includes an introduction on the importance of nanolithography in today's research and technology, providing examples of its applications. The remainder of the book is split into two sections. The first section contains the most important and established nanolithography techniques. As well as a detailed description of each technique, the reader can obtain useful information about the main advantages and drawbacks of each technique in terms of resolution, throughput, number of steps needed, cost, etc. At the end of this section, the reader will be able to decide which technique to use for different applications. The second section explores more specific applications of the nanolithography techniques previously described; as well as new techniques and applications. In some cases, the processes described in these chapters involve a combination of several nanolithography techniques. This section is less general but provides the reader with real examples.

Methods for Electrocatalysis

Methods for Electrocatalysis PDF Author: Inamuddin
Publisher: Springer Nature
ISBN: 3030271617
Category : Technology & Engineering
Languages : en
Pages : 469

Get Book Here

Book Description
This book explores key parameters, properties and fundamental concepts of electrocatalysis. It also discusses the engineering strategies, current applications in fuel-cells, water-splitting, metal-ion batteries, and fuel generation. This book elucidates entire category viewpoints together with industrial applications. Therefore, all the sections of this book emphasize the recent advances of different types of electrocatalysts, current challenges, and state-of-the-art studies through detailed reviews. This book is the result of commitments by numerous experts in the field from various backgrounds and expertise and appeals to industrialists, researchers, scientists and in addition understudies from various teaches.