Author: Guy David
Publisher: American Mathematical Society
ISBN: 1470450437
Category : Mathematics
Languages : en
Pages : 123
Book Description
View the abstract.
Elliptic Theory for Sets with Higher Co-Dimensional Boundaries
Author: Guy David
Publisher: American Mathematical Society
ISBN: 1470450437
Category : Mathematics
Languages : en
Pages : 123
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470450437
Category : Mathematics
Languages : en
Pages : 123
Book Description
View the abstract.
Rectifiability
Author: Pertti Mattila
Publisher: Cambridge University Press
ISBN: 1009288083
Category : Mathematics
Languages : en
Pages : 181
Book Description
A broad survey of the theory of rectifiability and its deep connections to numerous different areas of mathematics.
Publisher: Cambridge University Press
ISBN: 1009288083
Category : Mathematics
Languages : en
Pages : 181
Book Description
A broad survey of the theory of rectifiability and its deep connections to numerous different areas of mathematics.
Nonlinear Potential Theory of Degenerate Elliptic Equations
Author: Juha Heinonen
Publisher: Courier Dover Publications
ISBN: 048682425X
Category : Mathematics
Languages : en
Pages : 417
Book Description
A self-contained treatment appropriate for advanced undergraduate and graduate students, this volume offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. Starting with the theory of weighted Sobolev spaces, the text advances to the theory of weighted variational capacity. Succeeding chapters investigate solutions and supersolutions of equations, with emphasis on refined Sobolev spaces, variational integrals, and harmonic functions. Chapter 7 defines superharmonic functions via the comparison principle, and chapters 8 through 14 form the core of the nonlinear potential theory of superharmonic functions. Topics include balayage; Perron's method, barriers, and resolutivity; polar sets; harmonic measure; fine topology; harmonic morphisms; and quasiregular mappings. The book concludes with explorations of axiomatic nonlinear potential theory and helpful appendixes.
Publisher: Courier Dover Publications
ISBN: 048682425X
Category : Mathematics
Languages : en
Pages : 417
Book Description
A self-contained treatment appropriate for advanced undergraduate and graduate students, this volume offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. Starting with the theory of weighted Sobolev spaces, the text advances to the theory of weighted variational capacity. Succeeding chapters investigate solutions and supersolutions of equations, with emphasis on refined Sobolev spaces, variational integrals, and harmonic functions. Chapter 7 defines superharmonic functions via the comparison principle, and chapters 8 through 14 form the core of the nonlinear potential theory of superharmonic functions. Topics include balayage; Perron's method, barriers, and resolutivity; polar sets; harmonic measure; fine topology; harmonic morphisms; and quasiregular mappings. The book concludes with explorations of axiomatic nonlinear potential theory and helpful appendixes.
On Spectral Theory of Elliptic Operators
Author: Yuri V. Egorov
Publisher: Birkhäuser
ISBN: 303489029X
Category : Mathematics
Languages : en
Pages : 336
Book Description
It is well known that a wealth of problems of different nature, applied as well as purely theoretic, can be reduced to the study of elliptic equations and their eigen-values. During the years many books and articles have been published on this topic, considering spectral properties of elliptic differential operators from different points of view. This is one more book on these properties. This book is devoted to the study of some classical problems of the spectral theory of elliptic differential equations. The reader will find hardly any intersections with the books of Shubin [Sh] or Rempel-Schulze [ReSch] or with the works cited there. This book also has no general information in common with the books by Egorov and Shubin [EgShu], which also deal with spectral properties of elliptic operators. There is nothing here on oblique derivative problems; the reader will meet no pseudodifferential operators. The main subject of the book is the estimates of eigenvalues, especially of the first one, and of eigenfunctions of elliptic operators. The considered problems have in common the approach consisting of the application of the variational principle and some a priori estimates, usually in Sobolev spaces. In many cases, impor tant for physics and mechanics, as well as for geometry and analysis, this rather elementary approach allows one to obtain sharp results.
Publisher: Birkhäuser
ISBN: 303489029X
Category : Mathematics
Languages : en
Pages : 336
Book Description
It is well known that a wealth of problems of different nature, applied as well as purely theoretic, can be reduced to the study of elliptic equations and their eigen-values. During the years many books and articles have been published on this topic, considering spectral properties of elliptic differential operators from different points of view. This is one more book on these properties. This book is devoted to the study of some classical problems of the spectral theory of elliptic differential equations. The reader will find hardly any intersections with the books of Shubin [Sh] or Rempel-Schulze [ReSch] or with the works cited there. This book also has no general information in common with the books by Egorov and Shubin [EgShu], which also deal with spectral properties of elliptic operators. There is nothing here on oblique derivative problems; the reader will meet no pseudodifferential operators. The main subject of the book is the estimates of eigenvalues, especially of the first one, and of eigenfunctions of elliptic operators. The considered problems have in common the approach consisting of the application of the variational principle and some a priori estimates, usually in Sobolev spaces. In many cases, impor tant for physics and mechanics, as well as for geometry and analysis, this rather elementary approach allows one to obtain sharp results.
Geometric Integration Theory
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
ISBN: 0817646795
Category : Mathematics
Languages : en
Pages : 344
Book Description
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Publisher: Springer Science & Business Media
ISBN: 0817646795
Category : Mathematics
Languages : en
Pages : 344
Book Description
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II
Author: Vladimir Maz'ya
Publisher: Birkhäuser
ISBN: 303488432X
Category : Mathematics
Languages : en
Pages : 336
Book Description
For the first time in the mathematical literature, this two-volume work introduces a unified and general approach to the subject. To a large extent, the book is based on the authors’ work, and has no significant overlap with other books on the theory of elliptic boundary value problems
Publisher: Birkhäuser
ISBN: 303488432X
Category : Mathematics
Languages : en
Pages : 336
Book Description
For the first time in the mathematical literature, this two-volume work introduces a unified and general approach to the subject. To a large extent, the book is based on the authors’ work, and has no significant overlap with other books on the theory of elliptic boundary value problems
Open Problems in Mathematics
Author: John Forbes Nash, Jr.
Publisher: Springer
ISBN: 3319321625
Category : Mathematics
Languages : en
Pages : 547
Book Description
The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.
Publisher: Springer
ISBN: 3319321625
Category : Mathematics
Languages : en
Pages : 547
Book Description
The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.
Elliptic Partial Differential Equations of Second Order
Author: D. Gilbarg
Publisher: Springer Science & Business Media
ISBN: 364296379X
Category : Mathematics
Languages : en
Pages : 409
Book Description
This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.
Publisher: Springer Science & Business Media
ISBN: 364296379X
Category : Mathematics
Languages : en
Pages : 409
Book Description
This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.
Numerical Methods for Elliptic and Parabolic Partial Differential Equations
Author: Peter Knabner
Publisher: Springer Science & Business Media
ISBN: 038795449X
Category : Mathematics
Languages : en
Pages : 437
Book Description
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Publisher: Springer Science & Business Media
ISBN: 038795449X
Category : Mathematics
Languages : en
Pages : 437
Book Description
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Elliptic Theory on Singular Manifolds
Author: Vladimir E. Nazaikinskii
Publisher: CRC Press
ISBN: 1420034979
Category : Mathematics
Languages : en
Pages : 372
Book Description
The analysis and topology of elliptic operators on manifolds with singularities are much more complicated than in the smooth case and require completely new mathematical notions and theories. While there has recently been much progress in the field, many of these results have remained scattered in journals and preprints. Starting from an ele
Publisher: CRC Press
ISBN: 1420034979
Category : Mathematics
Languages : en
Pages : 372
Book Description
The analysis and topology of elliptic operators on manifolds with singularities are much more complicated than in the smooth case and require completely new mathematical notions and theories. While there has recently been much progress in the field, many of these results have remained scattered in journals and preprints. Starting from an ele