Author: Giovanni Maria Troianiello
Publisher: Springer Science & Business Media
ISBN: 1489936149
Category : Mathematics
Languages : en
Pages : 369
Book Description
In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible.
Elliptic Differential Equations and Obstacle Problems
Author: Giovanni Maria Troianiello
Publisher: Springer Science & Business Media
ISBN: 1489936149
Category : Mathematics
Languages : en
Pages : 369
Book Description
In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible.
Publisher: Springer Science & Business Media
ISBN: 1489936149
Category : Mathematics
Languages : en
Pages : 369
Book Description
In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible.
Elliptic Differential Equations and Obstacle Problems
Author: Giovanni Maria Troianiello
Publisher: Springer Science & Business Media
ISBN: 9780306424489
Category : Mathematics
Languages : en
Pages : 378
Book Description
In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible.
Publisher: Springer Science & Business Media
ISBN: 9780306424489
Category : Mathematics
Languages : en
Pages : 378
Book Description
In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible.
Fine Regularity of Solutions of Elliptic Partial Differential Equations
Author: Jan MalĂ˝
Publisher: American Mathematical Soc.
ISBN: 0821803352
Category : Mathematics
Languages : en
Pages : 309
Book Description
The primary objective of this monograph is to give a comprehensive exposition of results surrounding the work of the authors concerning boundary regularity of weak solutions of second order elliptic quasilinear equations in divergence form. The book also contains a complete development of regularity of solutions of variational inequalities, including the double obstacle problem, where the obstacles are allowed to be discontinuous. The book concludes with a chapter devoted to the existence theory thus providing the reader with a complete treatment of the subject ranging from regularity of weak solutions to the existence of weak solutions.
Publisher: American Mathematical Soc.
ISBN: 0821803352
Category : Mathematics
Languages : en
Pages : 309
Book Description
The primary objective of this monograph is to give a comprehensive exposition of results surrounding the work of the authors concerning boundary regularity of weak solutions of second order elliptic quasilinear equations in divergence form. The book also contains a complete development of regularity of solutions of variational inequalities, including the double obstacle problem, where the obstacles are allowed to be discontinuous. The book concludes with a chapter devoted to the existence theory thus providing the reader with a complete treatment of the subject ranging from regularity of weak solutions to the existence of weak solutions.
The obstacle problem
Author: Luis Angel Caffarelli
Publisher: Edizioni della Normale
ISBN: 9788876422492
Category : Mathematics
Languages : en
Pages : 0
Book Description
The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.
Publisher: Edizioni della Normale
ISBN: 9788876422492
Category : Mathematics
Languages : en
Pages : 0
Book Description
The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.
Global Bifurcation in Variational Inequalities
Author: Vy Khoi Le
Publisher: Springer Science & Business Media
ISBN: 9780387948867
Category : Mathematics
Languages : en
Pages : 276
Book Description
An up-to-date and unified treatment of bifurcation theory for variational inequalities in reflexive spaces and the use of the theory in a variety of applications, such as: obstacle problems from elasticity theory, unilateral problems; torsion problems; equations from fluid mechanics and quasilinear elliptic partial differential equations. The tools employed are those of modern nonlinear analysis. Accessible to graduate students and researchers who work in nonlinear analysis, nonlinear partial differential equations, and additional research disciplines that use nonlinear mathematics.
Publisher: Springer Science & Business Media
ISBN: 9780387948867
Category : Mathematics
Languages : en
Pages : 276
Book Description
An up-to-date and unified treatment of bifurcation theory for variational inequalities in reflexive spaces and the use of the theory in a variety of applications, such as: obstacle problems from elasticity theory, unilateral problems; torsion problems; equations from fluid mechanics and quasilinear elliptic partial differential equations. The tools employed are those of modern nonlinear analysis. Accessible to graduate students and researchers who work in nonlinear analysis, nonlinear partial differential equations, and additional research disciplines that use nonlinear mathematics.
The Finite Element Method for Elliptic Problems
Author: P.G. Ciarlet
Publisher: Elsevier
ISBN: 0080875254
Category : Mathematics
Languages : en
Pages : 551
Book Description
The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.
Publisher: Elsevier
ISBN: 0080875254
Category : Mathematics
Languages : en
Pages : 551
Book Description
The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.
Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem
Author: Roland Glowinski
Publisher: SIAM
ISBN: 1611973783
Category : Mathematics
Languages : en
Pages : 473
Book Description
Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.
Publisher: SIAM
ISBN: 1611973783
Category : Mathematics
Languages : en
Pages : 473
Book Description
Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.
Regularity of Free Boundaries in Obstacle-Type Problems
Author: Arshak Petrosyan
Publisher: American Mathematical Soc.
ISBN: 0821887947
Category : Mathematics
Languages : en
Pages : 233
Book Description
The regularity theory of free boundaries flourished during the late 1970s and early 1980s and had a major impact in several areas of mathematics, mathematical physics, and industrial mathematics, as well as in applications. Since then the theory continued to evolve. Numerous new ideas, techniques, and methods have been developed, and challenging new problems in applications have arisen. The main intention of the authors of this book is to give a coherent introduction to the study of the regularity properties of free boundaries for a particular type of problems, known as obstacle-type problems. The emphasis is on the methods developed in the past two decades. The topics include optimal regularity, nondegeneracy, rescalings and blowups, classification of global solutions, several types of monotonicity formulas, Lipschitz, $C^1$, as well as higher regularity of the free boundary, structure of the singular set, touch of the free and fixed boundaries, and more. The book is based on lecture notes for the courses and mini-courses given by the authors at various locations and should be accessible to advanced graduate students and researchers in analysis and partial differential equations.
Publisher: American Mathematical Soc.
ISBN: 0821887947
Category : Mathematics
Languages : en
Pages : 233
Book Description
The regularity theory of free boundaries flourished during the late 1970s and early 1980s and had a major impact in several areas of mathematics, mathematical physics, and industrial mathematics, as well as in applications. Since then the theory continued to evolve. Numerous new ideas, techniques, and methods have been developed, and challenging new problems in applications have arisen. The main intention of the authors of this book is to give a coherent introduction to the study of the regularity properties of free boundaries for a particular type of problems, known as obstacle-type problems. The emphasis is on the methods developed in the past two decades. The topics include optimal regularity, nondegeneracy, rescalings and blowups, classification of global solutions, several types of monotonicity formulas, Lipschitz, $C^1$, as well as higher regularity of the free boundary, structure of the singular set, touch of the free and fixed boundaries, and more. The book is based on lecture notes for the courses and mini-courses given by the authors at various locations and should be accessible to advanced graduate students and researchers in analysis and partial differential equations.
Elliptic Partial Differential Equations
Author: Lucio Boccardo
Publisher: Walter de Gruyter
ISBN: 3110315424
Category : Mathematics
Languages : en
Pages : 204
Book Description
Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.
Publisher: Walter de Gruyter
ISBN: 3110315424
Category : Mathematics
Languages : en
Pages : 204
Book Description
Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.
Degenerate Elliptic Equations
Author: Serge Levendorskii
Publisher: Springer Science & Business Media
ISBN: 9401712158
Category : Mathematics
Languages : en
Pages : 442
Book Description
This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Grding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 9401712158
Category : Mathematics
Languages : en
Pages : 442
Book Description
This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Grding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.