Author: Michael Laska
Publisher: Springer-Verlag
ISBN: 3322875997
Category : Mathematics
Languages : de
Pages : 220
Book Description
Elliptic Curves over Number Fields with Prescribed Reduction Type
Author: Michael Laska
Publisher: Springer-Verlag
ISBN: 3322875997
Category : Mathematics
Languages : de
Pages : 220
Book Description
Publisher: Springer-Verlag
ISBN: 3322875997
Category : Mathematics
Languages : de
Pages : 220
Book Description
Basic Number Theory.
Author: Andre Weil
Publisher: Springer Science & Business Media
ISBN: 3662059789
Category : Mathematics
Languages : en
Pages : 332
Book Description
Itpzf}JlOV, li~oxov uoq>ZUJlCJ. 7:WV Al(JX., llpoj1. AE(Jj1. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set ofnotes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by ChevaIley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very welt It contained abrief but essentially com plete account of the main features of c1assfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I inc1uded such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather c10sely at some critical points.
Publisher: Springer Science & Business Media
ISBN: 3662059789
Category : Mathematics
Languages : en
Pages : 332
Book Description
Itpzf}JlOV, li~oxov uoq>ZUJlCJ. 7:WV Al(JX., llpoj1. AE(Jj1. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set ofnotes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by ChevaIley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very welt It contained abrief but essentially com plete account of the main features of c1assfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I inc1uded such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather c10sely at some critical points.
Rational Points on Modular Elliptic Curves
Author: Henri Darmon
Publisher: American Mathematical Soc.
ISBN: 0821828681
Category : Mathematics
Languages : en
Pages : 146
Book Description
The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Publisher: American Mathematical Soc.
ISBN: 0821828681
Category : Mathematics
Languages : en
Pages : 146
Book Description
The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Rational Points on Elliptic Curves
Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475742525
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Publisher: Springer Science & Business Media
ISBN: 1475742525
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
The Arithmetic of Elliptic Curves
Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475719205
Category : Mathematics
Languages : en
Pages : 414
Book Description
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Publisher: Springer Science & Business Media
ISBN: 1475719205
Category : Mathematics
Languages : en
Pages : 414
Book Description
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Elliptic Curves
Author: Susanne Schmitt
Publisher: Walter de Gruyter
ISBN: 3110198010
Category : Mathematics
Languages : en
Pages : 378
Book Description
The basics of the theory of elliptic curves should be known to everybody, be he (or she) a mathematician or a computer scientist. Especially everybody concerned with cryptography should know the elements of this theory. The purpose of the present textbook is to give an elementary introduction to elliptic curves. Since this branch of number theory is particularly accessible to computer-assisted calculations, the authors make use of it by approaching the theory under a computational point of view. Specifically, the computer-algebra package SIMATH can be applied on several occasions. However, the book can be read also by those not interested in any computations. Of course, the theory of elliptic curves is very comprehensive and becomes correspondingly sophisticated. That is why the authors made a choice of the topics treated. Topics covered include the determination of torsion groups, computations regarding the Mordell-Weil group, height calculations, S-integral points. The contents is kept as elementary as possible. In this way it becomes obvious in which respect the book differs from the numerous textbooks on elliptic curves nowadays available.
Publisher: Walter de Gruyter
ISBN: 3110198010
Category : Mathematics
Languages : en
Pages : 378
Book Description
The basics of the theory of elliptic curves should be known to everybody, be he (or she) a mathematician or a computer scientist. Especially everybody concerned with cryptography should know the elements of this theory. The purpose of the present textbook is to give an elementary introduction to elliptic curves. Since this branch of number theory is particularly accessible to computer-assisted calculations, the authors make use of it by approaching the theory under a computational point of view. Specifically, the computer-algebra package SIMATH can be applied on several occasions. However, the book can be read also by those not interested in any computations. Of course, the theory of elliptic curves is very comprehensive and becomes correspondingly sophisticated. That is why the authors made a choice of the topics treated. Topics covered include the determination of torsion groups, computations regarding the Mordell-Weil group, height calculations, S-integral points. The contents is kept as elementary as possible. In this way it becomes obvious in which respect the book differs from the numerous textbooks on elliptic curves nowadays available.
Elliptic Curves
Author: Dale Husemoller
Publisher: Springer Science & Business Media
ISBN: 1475751192
Category : Mathematics
Languages : en
Pages : 363
Book Description
The book divides naturally into several parts according to the level of the material, the background required of the reader, and the style of presentation with respect to details of proofs. For example, the first part, to Chapter 6, is undergraduate in level, the second part requires a background in Galois theory and the third some complex analysis, while the last parts, from Chapter 12 on, are mostly at graduate level. A general outline ofmuch ofthe material can be found in Tate's colloquium lectures reproduced as an article in Inven tiones [1974]. The first part grew out of Tate's 1961 Haverford Philips Lectures as an attempt to write something for publication c10sely related to the original Tate notes which were more or less taken from the tape recording of the lectures themselves. This inc1udes parts of the Introduction and the first six chapters The aim ofthis part is to prove, by elementary methods, the Mordell theorem on the finite generation of the rational points on elliptic curves defined over the rational numbers. In 1970 Tate teturned to Haverford to give again, in revised form, the originallectures of 1961 and to extend the material so that it would be suitable for publication. This led to a broader plan forthe book.
Publisher: Springer Science & Business Media
ISBN: 1475751192
Category : Mathematics
Languages : en
Pages : 363
Book Description
The book divides naturally into several parts according to the level of the material, the background required of the reader, and the style of presentation with respect to details of proofs. For example, the first part, to Chapter 6, is undergraduate in level, the second part requires a background in Galois theory and the third some complex analysis, while the last parts, from Chapter 12 on, are mostly at graduate level. A general outline ofmuch ofthe material can be found in Tate's colloquium lectures reproduced as an article in Inven tiones [1974]. The first part grew out of Tate's 1961 Haverford Philips Lectures as an attempt to write something for publication c10sely related to the original Tate notes which were more or less taken from the tape recording of the lectures themselves. This inc1udes parts of the Introduction and the first six chapters The aim ofthis part is to prove, by elementary methods, the Mordell theorem on the finite generation of the rational points on elliptic curves defined over the rational numbers. In 1970 Tate teturned to Haverford to give again, in revised form, the originallectures of 1961 and to extend the material so that it would be suitable for publication. This led to a broader plan forthe book.
Automorphic Forms and the Picard Number of an Elliptic Surface
Author: Peter F. Stiller
Publisher: Springer Science & Business Media
ISBN: 3322907082
Category : Technology & Engineering
Languages : en
Pages : 201
Book Description
In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the curves on this surface. In order to do this one introduces various equivalence relations on the group of divisors (cycles of codimension one). One such relation is algebraic equivalence and we denote by NS(E) the group of divisors modulo algebraic equivalence which is called the N~ron-Severi group of the surface E. This is known to be a finitely generated abelian group which can be regarded naturally as a subgroup of 2 H (E,Z). The rank of NS(E) will be denoted p and is known as the Picard number of E. 2 Every divisor determines a cohomology class in H(E,E) which is of I type (1,1), that is to say a class in H(E,9!) which can be viewed as a 2 subspace of H(E,E) via the Hodge decomposition. The Hodge Conjecture asserts in general that every rational cohomology class of type (p,p) is algebraic. In our case this is the Lefschetz Theorem on (I,l)-classes: Every cohomology class 2 2 is the class associated to some divisor. Here we are writing H (E,Z) for 2 its image under the natural mapping into H (E,t). Thus NS(E) modulo 2 torsion is Hl(E,n!) n H(E,Z) and th 1 b i f h -~ p measures e a ge ra c part 0 t e cohomology.
Publisher: Springer Science & Business Media
ISBN: 3322907082
Category : Technology & Engineering
Languages : en
Pages : 201
Book Description
In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the curves on this surface. In order to do this one introduces various equivalence relations on the group of divisors (cycles of codimension one). One such relation is algebraic equivalence and we denote by NS(E) the group of divisors modulo algebraic equivalence which is called the N~ron-Severi group of the surface E. This is known to be a finitely generated abelian group which can be regarded naturally as a subgroup of 2 H (E,Z). The rank of NS(E) will be denoted p and is known as the Picard number of E. 2 Every divisor determines a cohomology class in H(E,E) which is of I type (1,1), that is to say a class in H(E,9!) which can be viewed as a 2 subspace of H(E,E) via the Hodge decomposition. The Hodge Conjecture asserts in general that every rational cohomology class of type (p,p) is algebraic. In our case this is the Lefschetz Theorem on (I,l)-classes: Every cohomology class 2 2 is the class associated to some divisor. Here we are writing H (E,Z) for 2 its image under the natural mapping into H (E,t). Thus NS(E) modulo 2 torsion is Hl(E,n!) n H(E,Z) and th 1 b i f h -~ p measures e a ge ra c part 0 t e cohomology.
Abelian l-Adic Representations and Elliptic Curves
Author: Jean-Pierre Serre
Publisher: CRC Press
ISBN: 1439863865
Category : Mathematics
Languages : en
Pages : 203
Book Description
This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one
Publisher: CRC Press
ISBN: 1439863865
Category : Mathematics
Languages : en
Pages : 203
Book Description
This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one
Introduction to the Geometry of Foliations, Part A
Author: Gilbert Hector
Publisher: Springer Science & Business Media
ISBN: 3322901157
Category : Mathematics
Languages : en
Pages : 247
Book Description
Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pioneer work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and IV. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and otners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. ~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and cnaracteristic classes) on the one hand, and the qualitative or geometrie theory on the other. The present volume is the first part of a monograph on geometrie aspects of foliations. Our intention here is to present some fundamental concepts and results as weIl as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that tilis goal has been achieved
Publisher: Springer Science & Business Media
ISBN: 3322901157
Category : Mathematics
Languages : en
Pages : 247
Book Description
Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pioneer work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and IV. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and otners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. ~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and cnaracteristic classes) on the one hand, and the qualitative or geometrie theory on the other. The present volume is the first part of a monograph on geometrie aspects of foliations. Our intention here is to present some fundamental concepts and results as weIl as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that tilis goal has been achieved