Author: Viktor Vasilʹevich Prasolov
Publisher: American Mathematical Soc.
ISBN: 9780821883983
Category : Mathematics
Languages : en
Pages : 362
Book Description
Modern topology uses very diverse methods. This book is devoted largely to methods of combinatorial topology, which reduce the study of topological spaces to investigations of their partitions into elementary sets, and to methods of differential topology, which deal with smooth manifolds and smooth maps. Many topological problems can be solved by using either of these two kinds of methods, combinatorial or differential. In such cases, both approaches are discussed. One of the maingoals of this book is to advance as far as possible in the study of the properties of topological spaces (especially manifolds) without employing complicated techniques. This distinguishes it from the majority of other books on topology. The book contains many problems; almost all of them are suppliedwith hints or complete solutions.
Elements of Combinatorial and Differential Topology
Author: Viktor Vasilʹevich Prasolov
Publisher: American Mathematical Soc.
ISBN: 9780821883983
Category : Mathematics
Languages : en
Pages : 362
Book Description
Modern topology uses very diverse methods. This book is devoted largely to methods of combinatorial topology, which reduce the study of topological spaces to investigations of their partitions into elementary sets, and to methods of differential topology, which deal with smooth manifolds and smooth maps. Many topological problems can be solved by using either of these two kinds of methods, combinatorial or differential. In such cases, both approaches are discussed. One of the maingoals of this book is to advance as far as possible in the study of the properties of topological spaces (especially manifolds) without employing complicated techniques. This distinguishes it from the majority of other books on topology. The book contains many problems; almost all of them are suppliedwith hints or complete solutions.
Publisher: American Mathematical Soc.
ISBN: 9780821883983
Category : Mathematics
Languages : en
Pages : 362
Book Description
Modern topology uses very diverse methods. This book is devoted largely to methods of combinatorial topology, which reduce the study of topological spaces to investigations of their partitions into elementary sets, and to methods of differential topology, which deal with smooth manifolds and smooth maps. Many topological problems can be solved by using either of these two kinds of methods, combinatorial or differential. In such cases, both approaches are discussed. One of the maingoals of this book is to advance as far as possible in the study of the properties of topological spaces (especially manifolds) without employing complicated techniques. This distinguishes it from the majority of other books on topology. The book contains many problems; almost all of them are suppliedwith hints or complete solutions.
Elements of Homology Theory
Author: Viktor Vasilʹevich Prasolov
Publisher: American Mathematical Soc.
ISBN: 0821838121
Category : Mathematics
Languages : en
Pages : 432
Book Description
The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.
Publisher: American Mathematical Soc.
ISBN: 0821838121
Category : Mathematics
Languages : en
Pages : 432
Book Description
The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.
A Combinatorial Introduction to Topology
Author: Michael Henle
Publisher: Courier Corporation
ISBN: 9780486679662
Category : Mathematics
Languages : en
Pages : 340
Book Description
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
Publisher: Courier Corporation
ISBN: 9780486679662
Category : Mathematics
Languages : en
Pages : 340
Book Description
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
Elements of Differential Topology
Author: Anant R. Shastri
Publisher: CRC Press
ISBN: 1439831637
Category : Mathematics
Languages : en
Pages : 317
Book Description
Derived from the author's course on the subject, Elements of Differential Topology explores the vast and elegant theories in topology developed by Morse, Thom, Smale, Whitney, Milnor, and others. It begins with differential and integral calculus, leads you through the intricacies of manifold theory, and concludes with discussions on algebraic topol
Publisher: CRC Press
ISBN: 1439831637
Category : Mathematics
Languages : en
Pages : 317
Book Description
Derived from the author's course on the subject, Elements of Differential Topology explores the vast and elegant theories in topology developed by Morse, Thom, Smale, Whitney, Milnor, and others. It begins with differential and integral calculus, leads you through the intricacies of manifold theory, and concludes with discussions on algebraic topol
Elements of Combinatorial and Differential Topology
Author: V. V. Prasolov
Publisher: American Mathematical Society
ISBN: 1470469448
Category : Mathematics
Languages : en
Pages : 331
Book Description
Modern topology uses very diverse methods. This book is devoted largely to methods of combinatorial topology, which reduce the study of topological spaces to investigations of their partitions into elementary sets, and to methods of differential topology, which deal with smooth manifolds and smooth maps. Many topological problems can be solved by using either of these two kinds of methods, combinatorial or differential. In such cases, both approaches are discussed. One of the main goals of this book is to advance as far as possible in the study of the properties of topological spaces (especially manifolds) without employing complicated techniques. This distinguishes it from the majority of other books on topology. The book contains many problems; almost all of them are supplied with hints or complete solutions.
Publisher: American Mathematical Society
ISBN: 1470469448
Category : Mathematics
Languages : en
Pages : 331
Book Description
Modern topology uses very diverse methods. This book is devoted largely to methods of combinatorial topology, which reduce the study of topological spaces to investigations of their partitions into elementary sets, and to methods of differential topology, which deal with smooth manifolds and smooth maps. Many topological problems can be solved by using either of these two kinds of methods, combinatorial or differential. In such cases, both approaches are discussed. One of the main goals of this book is to advance as far as possible in the study of the properties of topological spaces (especially manifolds) without employing complicated techniques. This distinguishes it from the majority of other books on topology. The book contains many problems; almost all of them are supplied with hints or complete solutions.
Topology from the Differentiable Viewpoint
Author: John Willard Milnor
Publisher: Princeton University Press
ISBN: 9780691048338
Category : Mathematics
Languages : en
Pages : 80
Book Description
This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.
Publisher: Princeton University Press
ISBN: 9780691048338
Category : Mathematics
Languages : en
Pages : 80
Book Description
This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.
Introduction to Differential Topology
Author: Theodor Bröcker
Publisher: Cambridge University Press
ISBN: 9780521284707
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.
Publisher: Cambridge University Press
ISBN: 9780521284707
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.
Stratified Morse Theory
Author: Mark Goresky
Publisher: Springer Science & Business Media
ISBN: 3642717144
Category : Mathematics
Languages : en
Pages : 279
Book Description
Due to the lack of proper bibliographical sources stratification theory seems to be a "mysterious" subject in contemporary mathematics. This book contains a complete and elementary survey - including an extended bibliography - on stratification theory, including its historical development. Some further important topics in the book are: Morse theory, singularities, transversality theory, complex analytic varieties, Lefschetz theorems, connectivity theorems, intersection homology, complements of affine subspaces and combinatorics. The book is designed for all interested students or professionals in this area.
Publisher: Springer Science & Business Media
ISBN: 3642717144
Category : Mathematics
Languages : en
Pages : 279
Book Description
Due to the lack of proper bibliographical sources stratification theory seems to be a "mysterious" subject in contemporary mathematics. This book contains a complete and elementary survey - including an extended bibliography - on stratification theory, including its historical development. Some further important topics in the book are: Morse theory, singularities, transversality theory, complex analytic varieties, Lefschetz theorems, connectivity theorems, intersection homology, complements of affine subspaces and combinatorics. The book is designed for all interested students or professionals in this area.
Foundations of Combinatorial Topology
Author: L. S. Pontryagin
Publisher: Courier Corporation
ISBN: 0486406857
Category : Mathematics
Languages : en
Pages : 112
Book Description
Concise, rigorous introduction to homology theory features applications to dimension theory and fixed-point theorems. Lucid coverage of the field includes examinations of complexes and their Betti groups, invariance of the Betti groups, and continuous mappings and fixed points. Proofs are presented in a complete and careful manner. A beneficial text for a graduate-level course, "this little book is an extremely valuable addition to the literature of algebraic topology." — The Mathematical Gazette.
Publisher: Courier Corporation
ISBN: 0486406857
Category : Mathematics
Languages : en
Pages : 112
Book Description
Concise, rigorous introduction to homology theory features applications to dimension theory and fixed-point theorems. Lucid coverage of the field includes examinations of complexes and their Betti groups, invariance of the Betti groups, and continuous mappings and fixed points. Proofs are presented in a complete and careful manner. A beneficial text for a graduate-level course, "this little book is an extremely valuable addition to the literature of algebraic topology." — The Mathematical Gazette.
Differential Algebraic Topology
Author: Matthias Kreck
Publisher: American Mathematical Soc.
ISBN: 0821848984
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book presents a geometric introduction to the homology of topological spaces and the cohomology of smooth manifolds. The author introduces a new class of stratified spaces, so-called stratifolds. He derives basic concepts from differential topology such as Sard's theorem, partitions of unity and transversality. Based on this, homology groups are constructed in the framework of stratifolds and the homology axioms are proved. This implies that for nice spaces these homology groups agree with ordinary singular homology. Besides the standard computations of homology groups using the axioms, straightforward constructions of important homology classes are given. The author also defines stratifold cohomology groups following an idea of Quillen. Again, certain important cohomology classes occur very naturally in this description, for example, the characteristic classes which are constructed in the book and applied later on. One of the most fundamental results, Poincare duality, is almost a triviality in this approach. Some fundamental invariants, such as the Euler characteristic and the signature, are derived from (co)homology groups. These invariants play a significant role in some of the most spectacular results in differential topology. In particular, the author proves a special case of Hirzebruch's signature theorem and presents as a highlight Milnor's exotic 7-spheres. This book is based on courses the author taught in Mainz and Heidelberg. Readers should be familiar with the basic notions of point-set topology and differential topology. The book can be used for a combined introduction to differential and algebraic topology, as well as for a quick presentation of (co)homology in a course about differential geometry.
Publisher: American Mathematical Soc.
ISBN: 0821848984
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book presents a geometric introduction to the homology of topological spaces and the cohomology of smooth manifolds. The author introduces a new class of stratified spaces, so-called stratifolds. He derives basic concepts from differential topology such as Sard's theorem, partitions of unity and transversality. Based on this, homology groups are constructed in the framework of stratifolds and the homology axioms are proved. This implies that for nice spaces these homology groups agree with ordinary singular homology. Besides the standard computations of homology groups using the axioms, straightforward constructions of important homology classes are given. The author also defines stratifold cohomology groups following an idea of Quillen. Again, certain important cohomology classes occur very naturally in this description, for example, the characteristic classes which are constructed in the book and applied later on. One of the most fundamental results, Poincare duality, is almost a triviality in this approach. Some fundamental invariants, such as the Euler characteristic and the signature, are derived from (co)homology groups. These invariants play a significant role in some of the most spectacular results in differential topology. In particular, the author proves a special case of Hirzebruch's signature theorem and presents as a highlight Milnor's exotic 7-spheres. This book is based on courses the author taught in Mainz and Heidelberg. Readers should be familiar with the basic notions of point-set topology and differential topology. The book can be used for a combined introduction to differential and algebraic topology, as well as for a quick presentation of (co)homology in a course about differential geometry.