Electronic Structure Theory of Complex Materials and Nanotubes

Electronic Structure Theory of Complex Materials and Nanotubes PDF Author: Young-Gui Yoon
Publisher:
ISBN:
Category :
Languages : en
Pages : 292

Get Book Here

Book Description

Electronic Structure Theory of Complex Materials and Nanotubes

Electronic Structure Theory of Complex Materials and Nanotubes PDF Author: Young-Gui Yoon
Publisher:
ISBN:
Category :
Languages : en
Pages : 292

Get Book Here

Book Description


Electronic Structure Methods for Complex Materials

Electronic Structure Methods for Complex Materials PDF Author: Wai-Yim Ching
Publisher: Oxford University Press
ISBN: 0199575800
Category : Science
Languages : en
Pages : 325

Get Book Here

Book Description
This book details the application of the OLCAO method for calculating the properties of solids from fundamental principles to a wide array of material systems. The method specializes in large and complex models and is able to compute a variety of useful properties including electronic, optical, and spectroscopic properties.

Electronic Properties of Carbon Nanotubes

Electronic Properties of Carbon Nanotubes PDF Author: Leroy Sidney
Publisher:
ISBN: 9781681172408
Category : Carbon nanotubes
Languages : en
Pages : 0

Get Book Here

Book Description
Carbon nanotubes (CNTs) are tubular cylinders of carbon atoms that have extraordinary mechanical, electrical, thermal, optical and chemical properties. CNTs typically have diameters ranging from 1 nanometer (nm) up to 50 nma nanometer is one thousand millionth of a meter. Typical CNT lengths are several micronsseveral thousand nanometers long; by contrast, Nanocomp's produced fibers are measured in millimetersthousands of times longer than all other commercially produced CNTs. They take the form of cylindrical carbon molecules and have novel properties that make them potentially useful in a wide variety of applications in nanotechnology, electronics, optics and other fields of materials science. They exhibit extraordinary strength and unique electrical properties, and are efficient conductors of heat. In the powdery format offered by all CNT producers (but for NTI), applications are limited to the properties possible by this form factore.g. additive active ingredients in semiconductors, liquid crystal displays (LCDs), sensors, and other uses in which these powders add some level of functional performance. Due to its fiber length and its form factors, NTI delivers strength and conductivity unlike any other commercial CNT producer, and so can address a much broader array of applications for which its material rivals copper and aluminum in conductivity, and steel, aluminum, carbon fibers and glass composites where strength and lightweight matter. Carbon nanotubes have been a subject of exhaustive research for a wide range of applications. The purpose of this book entitled Properties of Carbon Nanotubes is to give in-depth understanding of the physics and electronic structure of carbon nanotubes. This book discusses fabrication techniques followed by an analysis on the physical properties of carbon nanotubes, including density of states and electronic structures. Eventually, the book follows a significant amount of work in the industry applications of carbon nanotubes.

Quantum Chemistry of Nanotubes

Quantum Chemistry of Nanotubes PDF Author: Pavel N. D'yachkov
Publisher: CRC Press
ISBN: 042994182X
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
This book gives a detailed and up-to-date overview of the linearized augmented cylindrical wave (LACW) technique for nanotubes and nanowires. The author presents the mathematical foundations together with numerous applications. Method for calculating the electronic structure of point impurities, which is based on a combination of the LACW and Green’s functions techniques, is presented. The book clearly demonstrates how the relativistic effects can be incorporated into LACW approach and how the spin-orbit coupling effects change the tubules band structure. Extensive illustrations of application to the inorganic nanotubes and nanowires make the book essential reading in this field above all.

Quantum Theory of Real Materials

Quantum Theory of Real Materials PDF Author: James R. Chelikowsky
Publisher: Springer Science & Business Media
ISBN: 9780792396666
Category : Science
Languages : en
Pages : 580

Get Book Here

Book Description
A Festschrift in honor of Professor Marvin L. Cohen This volume is a Festschrift in honor of Professor Marvin L. Cohen. The articles, contributed by leading researchers in condensed matter physics, high-light recent advances in the use of quantum theory to explain and predict properties of real materials. The invention of quantum mechanics in the 1920's provided detailed descriptions of the electronic structure of atoms. However, a similar understanding of solids has been achieved only in the past 30 years, owing to the complex electron-ion and electron electron interactions in these systems. Professor Cohen is a central figure in this achievement. His development of the pseudopotential and total energy methods provided an alternate route using computers for the exploration of solids and new materials even when they have not yet been synthesized. Professor Cohen's contributions to materials theory have been both fundamental and encompassing. The corpus of his work consists of over 500 papers and a textbook. His band structures for semiconductors are used worldwide by researchers in solid state physics and chemistry and by device engineers. Professor Cohen's own use of his theories has resulted in the determination of the electronic structure, optical properties, structural and vibrational properties, and superconducting properties of numerous condensed matter systems including semiconductors, metals, surfaces, interfaces, defects in solids, clusters, and novel materials such as the fullerides and nanotubes.

Electronic Structure of Materials

Electronic Structure of Materials PDF Author: Rajendra Prasad
Publisher: Taylor & Francis
ISBN: 1466504706
Category : Science
Languages : en
Pages : 467

Get Book Here

Book Description
Most textbooks in the field are either too advanced for students or don't adequately cover current research topics. Bridging this gap, Electronic Structure of Materials helps advanced undergraduate and graduate students understand electronic structure methods and enables them to use these techniques in their work.Developed from the author's lecture

Electronic Structure

Electronic Structure PDF Author: Richard M. Martin
Publisher: Cambridge University Press
ISBN: 1108429904
Category : Mathematics
Languages : en
Pages : 791

Get Book Here

Book Description
An authoritative text in condensed matter physics, unifying theory and methods to present electronic structure to students and researchers.

Conceptual Foundations of Materials

Conceptual Foundations of Materials PDF Author:
Publisher: Elsevier
ISBN: 0080464572
Category : Science
Languages : en
Pages : 245

Get Book Here

Book Description
The goal of this Volume "Conceptual Foundations of Materials: A standard model for ground- and excited-state properties" is to present the fundamentals of electronic structure theory that are central to the understanding and prediction of materials phenomena and properties. The emphasis is on foundations and concepts. The Sections are designed to offer a broad and comprehensive perspective of the field. They cover the basic aspects of modern electronic structure approaches and highlight their applications to the structural (ground state, vibrational, dynamic and thermodynamic, etc.) and electronic (spectroscopic, dielectric, magnetic, transport, etc.) properties of real materials including solids, clusters, liquids, and nanostructure materials. This framework also forms a basis for studies of emergent properties arising from low-energy electron correlations and interactions such as the quantum Hall effects, superconductivity, and other cooperative phenomena. Although some of the basics and models for solids were developed in the early part of the last century by figures such as Bloch, Pauli, Fermi, and Slater, the field of electronic structure theory went through a phenomenal growth during the past two decades, leading to new concepts, understandings, and predictive capabilities for determining the ground- and excited-state properties of real, complex materials from first principles. For example, theory can now be used to predict the existence and properties of materials not previously realized in nature or in the laboratory. Computer experiments can be performed to examine the behavior of individual atoms in a particular process, to analyze the importance of different mechanisms, or just to see what happen if one varies the interactions and parameters in the simulation. Also, with ab initio calculations, one can determine from first principles important interaction parameters which are needed in model studies of complex processes or highly correlated systems. Each time a new material or a novel form of a material is discovered, electronic structure theory inevitably plays a fundamental role in unraveling its properties. - Provides the foundations of the field of condensed matter physics - An excellent supplementary text for classes on condensed matter physics/solid state physics - Volume covers current work at the forefront - Presentations are accessible to nonspecialists, with focus on underlying fundamentals

Introduction to Graphene-Based Nanomaterials

Introduction to Graphene-Based Nanomaterials PDF Author: Luis E. F. Foa Torres
Publisher: Cambridge University Press
ISBN: 1107030838
Category : Science
Languages : en
Pages : 425

Get Book Here

Book Description
A detailed primer describing the most effective theoretical and computational methods and tools for simulating graphene-based systems.

Electronic Structure of Materials

Electronic Structure of Materials PDF Author: Rajendra Prasad
Publisher: CRC Press
ISBN: 1466504684
Category : Science
Languages : en
Pages : 473

Get Book Here

Book Description
Most textbooks in the field are either too advanced for students or don’t adequately cover current research topics. Bridging this gap, Electronic Structure of Materials helps advanced undergraduate and graduate students understand electronic structure methods and enables them to use these techniques in their work. Developed from the author’s lecture notes, this classroom-tested book takes a microscopic view of materials as composed of interacting electrons and nuclei. It explains all the properties of materials in terms of basic quantities of electrons and nuclei, such as electronic charge, mass, and atomic number. Based on quantum mechanics, this first-principles approach does not have any adjustable parameters. The first half of the text presents the fundamentals and methods of electronic structure. Using numerous examples, the second half illustrates applications of the methods to various materials, including crystalline solids, disordered substitutional alloys, amorphous solids, nanoclusters, nanowires, graphene, topological insulators, battery materials, spintronic materials, and materials under extreme conditions. Every chapter starts at a basic level and gradually moves to more complex topics, preparing students for more advanced work in the field. End-of-chapter exercises also help students get a sense of numbers and visualize the physical picture associated with the problem. Students are encouraged to practice with the electronic structure calculations via user-friendly software packages.