Author: J.M. Chamberlain
Publisher: Springer Science & Business Media
ISBN: 146847412X
Category : Science
Languages : en
Pages : 477
Book Description
This Advanced Study Institute on the Electronic Properties of Multilayers and Low Dimensional Semiconductor Structures focussed on several of the most active areas in modern semiconductor physics. These included resonant tunnelling and superlattice phenomena and the topics of ballistic transport, quantised conductance and anomalous magnetoresistance effects in laterally gated two-dimensional electron systems. Although the main emphasis was on fundamental physics, a series of supporting lectures described the underlying technology (Molecular Beam Epitaxy, Metallo-Organic Chemical Vapour Deposition, Electron Beam Lithography and other advanced processing technologies). Actual and potential applications of low dimensional structures in optoelectronic and high frequency devices were also discussed. The ASI took the form of a series of lectures of about fifty minutes' duration which were given by senior researchers from a wide range of countries. Most of the lectures are recorded in these Proceedings. The younger members of the Institute made the predominant contribution to the discussion sessions following each lecture and, in addition, provided most of the fifty-five papers that were presented in two lively poster sessions. The ASl emphasised the impressive way in which this research field has developed through the fruitful interaction of theory, experiment and semiconductor device technology. Many of the talks demonstrated both the effectiveness and limitations of semiclassical concepts in describing the quantum phenomena exhibited by electrons in low dimensional structures.
Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures
Author: J.M. Chamberlain
Publisher: Springer Science & Business Media
ISBN: 146847412X
Category : Science
Languages : en
Pages : 477
Book Description
This Advanced Study Institute on the Electronic Properties of Multilayers and Low Dimensional Semiconductor Structures focussed on several of the most active areas in modern semiconductor physics. These included resonant tunnelling and superlattice phenomena and the topics of ballistic transport, quantised conductance and anomalous magnetoresistance effects in laterally gated two-dimensional electron systems. Although the main emphasis was on fundamental physics, a series of supporting lectures described the underlying technology (Molecular Beam Epitaxy, Metallo-Organic Chemical Vapour Deposition, Electron Beam Lithography and other advanced processing technologies). Actual and potential applications of low dimensional structures in optoelectronic and high frequency devices were also discussed. The ASI took the form of a series of lectures of about fifty minutes' duration which were given by senior researchers from a wide range of countries. Most of the lectures are recorded in these Proceedings. The younger members of the Institute made the predominant contribution to the discussion sessions following each lecture and, in addition, provided most of the fifty-five papers that were presented in two lively poster sessions. The ASl emphasised the impressive way in which this research field has developed through the fruitful interaction of theory, experiment and semiconductor device technology. Many of the talks demonstrated both the effectiveness and limitations of semiclassical concepts in describing the quantum phenomena exhibited by electrons in low dimensional structures.
Publisher: Springer Science & Business Media
ISBN: 146847412X
Category : Science
Languages : en
Pages : 477
Book Description
This Advanced Study Institute on the Electronic Properties of Multilayers and Low Dimensional Semiconductor Structures focussed on several of the most active areas in modern semiconductor physics. These included resonant tunnelling and superlattice phenomena and the topics of ballistic transport, quantised conductance and anomalous magnetoresistance effects in laterally gated two-dimensional electron systems. Although the main emphasis was on fundamental physics, a series of supporting lectures described the underlying technology (Molecular Beam Epitaxy, Metallo-Organic Chemical Vapour Deposition, Electron Beam Lithography and other advanced processing technologies). Actual and potential applications of low dimensional structures in optoelectronic and high frequency devices were also discussed. The ASI took the form of a series of lectures of about fifty minutes' duration which were given by senior researchers from a wide range of countries. Most of the lectures are recorded in these Proceedings. The younger members of the Institute made the predominant contribution to the discussion sessions following each lecture and, in addition, provided most of the fifty-five papers that were presented in two lively poster sessions. The ASl emphasised the impressive way in which this research field has developed through the fruitful interaction of theory, experiment and semiconductor device technology. Many of the talks demonstrated both the effectiveness and limitations of semiclassical concepts in describing the quantum phenomena exhibited by electrons in low dimensional structures.
Band Theory and Electronic Properties of Solids
Author: John Singleton
Publisher:
ISBN: 0198506449
Category : Science
Languages : en
Pages : 239
Book Description
This textbook attempts to reveal in a quantitative and fairly rigorous fashion how band theory leads to the everyday properties of materials.
Publisher:
ISBN: 0198506449
Category : Science
Languages : en
Pages : 239
Book Description
This textbook attempts to reveal in a quantitative and fairly rigorous fashion how band theory leads to the everyday properties of materials.
Electronic Properties of Organic Conductors
Author: Takehiko Mori
Publisher: Springer
ISBN: 4431552642
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
This book provides an easily understandable introduction to solid state physics for chemists and engineers. Band theory is introduced as an extension of molecular orbital theory, and its application to organic materials is described. Phenomena beyond band theory are treated in relation to magnetism and electron correlation, which are explained in terms of the valence bond theory and the Coulomb and exchange integrals. After the fundamental concepts of magnetism are outlined, the relation of correlation and superconductivity is described without assuming a knowledge of advanced physics. Molecular design of organic conductors and semiconductors is discussed from the standpoint of oxidation-reduction potentials, and after a brief survey of organic superconductors, various applications of organic semiconductor devices are described. This book will be useful not only for researchers but also for graduate students as a valuable reference.
Publisher: Springer
ISBN: 4431552642
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
This book provides an easily understandable introduction to solid state physics for chemists and engineers. Band theory is introduced as an extension of molecular orbital theory, and its application to organic materials is described. Phenomena beyond band theory are treated in relation to magnetism and electron correlation, which are explained in terms of the valence bond theory and the Coulomb and exchange integrals. After the fundamental concepts of magnetism are outlined, the relation of correlation and superconductivity is described without assuming a knowledge of advanced physics. Molecular design of organic conductors and semiconductors is discussed from the standpoint of oxidation-reduction potentials, and after a brief survey of organic superconductors, various applications of organic semiconductor devices are described. This book will be useful not only for researchers but also for graduate students as a valuable reference.
Rich Quasiparticle Properties of Low Dimensional Systems
Author: Dr Cheng-Hsueh Yang
Publisher:
ISBN: 9780750337830
Category : Carbon
Languages : en
Pages : 0
Book Description
This book discusses the essential properties of carbon nanotubes and 2D graphene systems. The book focuses on the fundamental excitation properties of a large range of graphene-related materials, presenting a new theoretical framework that couples electronic properties and e-e Coulomb interactions together in order to thoroughly explore Coulomb excitations and decay rates in carbon-nanotube-related systems.
Publisher:
ISBN: 9780750337830
Category : Carbon
Languages : en
Pages : 0
Book Description
This book discusses the essential properties of carbon nanotubes and 2D graphene systems. The book focuses on the fundamental excitation properties of a large range of graphene-related materials, presenting a new theoretical framework that couples electronic properties and e-e Coulomb interactions together in order to thoroughly explore Coulomb excitations and decay rates in carbon-nanotube-related systems.
Electronic Properties of Doped Semiconductors
Author: B.I. Shklovskii
Publisher: Springer Science & Business Media
ISBN: 3662024039
Category : Science
Languages : en
Pages : 400
Book Description
First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics". Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent.
Publisher: Springer Science & Business Media
ISBN: 3662024039
Category : Science
Languages : en
Pages : 400
Book Description
First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics". Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent.
Lower-Dimensional Systems and Molecular Electronics
Author: Robert M. Metzger
Publisher: Springer Science & Business Media
ISBN: 9780306438264
Category : Science
Languages : en
Pages : 764
Book Description
Proceedings of a NATO ASI held at Hotel Spetses, Spetses Island, Greece, June 12--23, 1989
Publisher: Springer Science & Business Media
ISBN: 9780306438264
Category : Science
Languages : en
Pages : 764
Book Description
Proceedings of a NATO ASI held at Hotel Spetses, Spetses Island, Greece, June 12--23, 1989
Quantum Theory of the Optical and Electronic Properties of Semiconductors
Author: Hartmut Haug
Publisher: World Scientific Publishing Company
ISBN: 9813104783
Category : Science
Languages : en
Pages : 492
Book Description
This textbook presents the basic elements needed to understand and engage in research in semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. The fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, optical Stark effect, semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects are covered. The material is presented in sufficient detail for graduate students and researchers who have a general background in quantum mechanics. Request Inspection Copy
Publisher: World Scientific Publishing Company
ISBN: 9813104783
Category : Science
Languages : en
Pages : 492
Book Description
This textbook presents the basic elements needed to understand and engage in research in semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. The fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, optical Stark effect, semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects are covered. The material is presented in sufficient detail for graduate students and researchers who have a general background in quantum mechanics. Request Inspection Copy
Electronic Properties of Inorganic Quasi-One-Dimensional Compounds
Author: P. Monceau
Publisher: Springer Science & Business Media
ISBN: 9401569231
Category : Science
Languages : en
Pages : 260
Book Description
The close relationship between experimentalists and theorists – whether solid state chemists or physicists – has, in the last few years, inspired much research in the field of materials with quasi one-dimensional structures. This volume, Part I of a two-volume set, reviews the basic theories describing the physical properties of one-dimensional materials including their superconducting characteristics. This description is mainly based on the properties of transition metal trichalcogenides. The novel collective transport mechanism for electronic conduction, exhibited by some of the latter compounds – NbSe3 being considered as the prototype – is surveyed according to a classical theory and a theory including macroscopic quantum effects. In addition, the book contains a description of the properties of non-linear excitations, or solitons, in one-dimensional systems.
Publisher: Springer Science & Business Media
ISBN: 9401569231
Category : Science
Languages : en
Pages : 260
Book Description
The close relationship between experimentalists and theorists – whether solid state chemists or physicists – has, in the last few years, inspired much research in the field of materials with quasi one-dimensional structures. This volume, Part I of a two-volume set, reviews the basic theories describing the physical properties of one-dimensional materials including their superconducting characteristics. This description is mainly based on the properties of transition metal trichalcogenides. The novel collective transport mechanism for electronic conduction, exhibited by some of the latter compounds – NbSe3 being considered as the prototype – is surveyed according to a classical theory and a theory including macroscopic quantum effects. In addition, the book contains a description of the properties of non-linear excitations, or solitons, in one-dimensional systems.
Low-Dimensional Systems
Author: Tobias Brandes
Publisher: Springer Science & Business Media
ISBN: 3540672370
Category : Science
Languages : en
Pages : 220
Book Description
Experimental progress over the past few years has made it possible to test a n- ber of fundamental physical concepts related to the motion of electrons in low dimensions. The production and experimental control of novel structures with typical sizes in the sub-micrometer regime has now become possible. In parti- lar, semiconductors are widely used in order to con?ne the motion of electrons in two-dimensional heterostructures. The quantum Hall e?ect was one of the ?rst highlights of the new physics that is revealed by this con?nement. In a further step of the technological development in semiconductor-heterostructures, other arti?cial devices such as quasi one-dimensional ‘quantum wires’ and ‘quantum dots’ (arti?cial atoms) have also been produced. These structures again di?er very markedly from three- and two-dimensional systems, especially in relation to the transport of electrons and the interaction with light. Although the technol- ical advances and the experimental skills connected with these new structures are progressing extremely fast, our theoretical understanding of the physical e?ects (such as the quantum Hall e?ect) is still at a very rudimentary level. In low-dimensional structures, the interaction of electrons with one another and with other degrees of freedoms such as lattice vibrations or light gives rise to new phenomena that are very di?erent from those familiar in the bulk ma- rial. The theoretical formulation of the electronic transport properties of small devices may be considered well-established, provided interaction processes are neglected.
Publisher: Springer Science & Business Media
ISBN: 3540672370
Category : Science
Languages : en
Pages : 220
Book Description
Experimental progress over the past few years has made it possible to test a n- ber of fundamental physical concepts related to the motion of electrons in low dimensions. The production and experimental control of novel structures with typical sizes in the sub-micrometer regime has now become possible. In parti- lar, semiconductors are widely used in order to con?ne the motion of electrons in two-dimensional heterostructures. The quantum Hall e?ect was one of the ?rst highlights of the new physics that is revealed by this con?nement. In a further step of the technological development in semiconductor-heterostructures, other arti?cial devices such as quasi one-dimensional ‘quantum wires’ and ‘quantum dots’ (arti?cial atoms) have also been produced. These structures again di?er very markedly from three- and two-dimensional systems, especially in relation to the transport of electrons and the interaction with light. Although the technol- ical advances and the experimental skills connected with these new structures are progressing extremely fast, our theoretical understanding of the physical e?ects (such as the quantum Hall e?ect) is still at a very rudimentary level. In low-dimensional structures, the interaction of electrons with one another and with other degrees of freedoms such as lattice vibrations or light gives rise to new phenomena that are very di?erent from those familiar in the bulk ma- rial. The theoretical formulation of the electronic transport properties of small devices may be considered well-established, provided interaction processes are neglected.
Geometric and Electronic Properties of Graphene-Related Systems
Author: Ngoc Thanh Thuy Tran
Publisher: CRC Press
ISBN: 1351368478
Category : Science
Languages : en
Pages : 316
Book Description
Due to its physical, chemical, and material properties, graphene has been widely studied both theoretically and experimentally since it was first synthesized in 2004. This book explores in detail the most up-to-date research in graphene-related systems, including few-layer graphene, sliding bilayer graphene, rippled graphene, carbon nanotubes, and adatom-doped graphene, among others. It focuses on the structure-, stacking-, layer-, orbital-, spin- and adatom-dependent essential properties, in which single- and multi-orbital chemical bondings can account for diverse phenomena. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes is excellent for graduate students and researchers, but understandable to undergraduates. The detailed theoretical framework developed in this book can be used in the future characterization of emergent materials.
Publisher: CRC Press
ISBN: 1351368478
Category : Science
Languages : en
Pages : 316
Book Description
Due to its physical, chemical, and material properties, graphene has been widely studied both theoretically and experimentally since it was first synthesized in 2004. This book explores in detail the most up-to-date research in graphene-related systems, including few-layer graphene, sliding bilayer graphene, rippled graphene, carbon nanotubes, and adatom-doped graphene, among others. It focuses on the structure-, stacking-, layer-, orbital-, spin- and adatom-dependent essential properties, in which single- and multi-orbital chemical bondings can account for diverse phenomena. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes is excellent for graduate students and researchers, but understandable to undergraduates. The detailed theoretical framework developed in this book can be used in the future characterization of emergent materials.