Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721803798
Category :
Languages : en
Pages : 36
Book Description
An experimental investigation of pressure-gain combustion for gas turbine application is described. The test article consists of an off-the-shelf valved pulsejet, and an optimized ejector, both housed within a shroud. The combination forms an effective can combustor across which there is a modest total pressure rise rather than the usual loss found in conventional combustors. Although the concept of using a pulsejet to affect semi-constant volume (i.e., pressure-gain) combustion is not new, that of combining it with a well designed ejector to efficiently mix the bypass flow is. The result is a device which to date has demonstrated an overall pressure rise of approximately 3.5 percent at an overall temperature ratio commensurate with modern gas turbines. This pressure ratio is substantially higher than what has been previously reported in pulsejet-based combustion experiments. Flow non-uniformities in the downstream portion of the device are also shown to be substantially reduced compared to those within the pulsejet itself. The standard deviation of total pressure fluctuations, measured just downstream of the ejector was only 5.0 percent of the mean. This smoothing aspect of the device is critical to turbomachinery applications since turbine performance is, in general, negatively affected by flow non-uniformities and unsteadiness. The experimental rig will be described and details of the performance measurements will be presented. Analyses showing the thermodynamic benefits from this level of pressure-gain performance in a gas turbine will also be assessed for several engine types. Issues regarding practical development of such a device are discussed, as are potential emissions reductions resulting from the rich burning nature of the pulsejet and the rapid mixing (quenching) associated with unsteady ejectors. Paxson, Daniel E. and Dougherty, Kevin T. Glenn Research Center NASA/TM-2005-213854, E-15224, AIAA Paper 2005-4216
Ejector Enhanced Pulsejet Based Pressure Gain Combustors
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721803798
Category :
Languages : en
Pages : 36
Book Description
An experimental investigation of pressure-gain combustion for gas turbine application is described. The test article consists of an off-the-shelf valved pulsejet, and an optimized ejector, both housed within a shroud. The combination forms an effective can combustor across which there is a modest total pressure rise rather than the usual loss found in conventional combustors. Although the concept of using a pulsejet to affect semi-constant volume (i.e., pressure-gain) combustion is not new, that of combining it with a well designed ejector to efficiently mix the bypass flow is. The result is a device which to date has demonstrated an overall pressure rise of approximately 3.5 percent at an overall temperature ratio commensurate with modern gas turbines. This pressure ratio is substantially higher than what has been previously reported in pulsejet-based combustion experiments. Flow non-uniformities in the downstream portion of the device are also shown to be substantially reduced compared to those within the pulsejet itself. The standard deviation of total pressure fluctuations, measured just downstream of the ejector was only 5.0 percent of the mean. This smoothing aspect of the device is critical to turbomachinery applications since turbine performance is, in general, negatively affected by flow non-uniformities and unsteadiness. The experimental rig will be described and details of the performance measurements will be presented. Analyses showing the thermodynamic benefits from this level of pressure-gain performance in a gas turbine will also be assessed for several engine types. Issues regarding practical development of such a device are discussed, as are potential emissions reductions resulting from the rich burning nature of the pulsejet and the rapid mixing (quenching) associated with unsteady ejectors. Paxson, Daniel E. and Dougherty, Kevin T. Glenn Research Center NASA/TM-2005-213854, E-15224, AIAA Paper 2005-4216
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721803798
Category :
Languages : en
Pages : 36
Book Description
An experimental investigation of pressure-gain combustion for gas turbine application is described. The test article consists of an off-the-shelf valved pulsejet, and an optimized ejector, both housed within a shroud. The combination forms an effective can combustor across which there is a modest total pressure rise rather than the usual loss found in conventional combustors. Although the concept of using a pulsejet to affect semi-constant volume (i.e., pressure-gain) combustion is not new, that of combining it with a well designed ejector to efficiently mix the bypass flow is. The result is a device which to date has demonstrated an overall pressure rise of approximately 3.5 percent at an overall temperature ratio commensurate with modern gas turbines. This pressure ratio is substantially higher than what has been previously reported in pulsejet-based combustion experiments. Flow non-uniformities in the downstream portion of the device are also shown to be substantially reduced compared to those within the pulsejet itself. The standard deviation of total pressure fluctuations, measured just downstream of the ejector was only 5.0 percent of the mean. This smoothing aspect of the device is critical to turbomachinery applications since turbine performance is, in general, negatively affected by flow non-uniformities and unsteadiness. The experimental rig will be described and details of the performance measurements will be presented. Analyses showing the thermodynamic benefits from this level of pressure-gain performance in a gas turbine will also be assessed for several engine types. Issues regarding practical development of such a device are discussed, as are potential emissions reductions resulting from the rich burning nature of the pulsejet and the rapid mixing (quenching) associated with unsteady ejectors. Paxson, Daniel E. and Dougherty, Kevin T. Glenn Research Center NASA/TM-2005-213854, E-15224, AIAA Paper 2005-4216
Combustion for Power Generation and Transportation
Author: Avinash Kumar Agarwal
Publisher: Springer
ISBN: 981103785X
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
This research monograph presents both fundamental science and applied innovations on several key and emerging technologies involving fossil and alternate fuel utilization in power and transport sectors from renowned experts in the field. Some of the topics covered include: autoignition in laminar and turbulent nonpremixed flames; Langevin simulation of turbulent combustion; lean blowout (LBO) prediction through symbolic time series analysis; lasers and optical diagnostics for next generation IC engine development; exergy destruction study on small DI diesel engine; and gasoline direct injection. The book includes a chapter on carbon sequestration and optimization of enhanced oil and gas recovery. The contents of this book will be useful to researchers and professionals working on all aspects on combustion.
Publisher: Springer
ISBN: 981103785X
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
This research monograph presents both fundamental science and applied innovations on several key and emerging technologies involving fossil and alternate fuel utilization in power and transport sectors from renowned experts in the field. Some of the topics covered include: autoignition in laminar and turbulent nonpremixed flames; Langevin simulation of turbulent combustion; lean blowout (LBO) prediction through symbolic time series analysis; lasers and optical diagnostics for next generation IC engine development; exergy destruction study on small DI diesel engine; and gasoline direct injection. The book includes a chapter on carbon sequestration and optimization of enhanced oil and gas recovery. The contents of this book will be useful to researchers and professionals working on all aspects on combustion.
41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 10-13 July 2005, Tucson, Arizona: 05-4200 - 05-4249
Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 560
Book Description
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 560
Book Description
ASME Technical Papers
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 500
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 500
Book Description
Paper
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 472
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 472
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1072
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1072
Book Description
Aircraft Propulsion
Author: Saeed Farokhi
Publisher: John Wiley & Sons
ISBN: 111880676X
Category : Technology & Engineering
Languages : en
Pages : 1052
Book Description
New edition of the successful textbook updated to include new material on UAVs, design guidelines in aircraft engine component systems and additional end of chapter problems Aircraft Propulsion, Second Edition follows the successful first edition textbook with comprehensive treatment of the subjects in airbreathing propulsion, from the basic principles to more advanced treatments in engine components and system integration. This new edition has been extensively updated to include a number of new and important topics. A chapter is now included on General Aviation and Uninhabited Aerial Vehicle (UAV) Propulsion Systems that includes a discussion on electric and hybrid propulsion. Propeller theory is added to the presentation of turboprop engines. A new section in cycle analysis treats Ultra-High Bypass (UHB) and Geared Turbofan engines. New material on drop-in biofuels and design for sustainability is added to refl ect the FAA’s 2025 Vision. In addition, the design guidelines in aircraft engine components are expanded to make the book user friendly for engine designers. Extensive review material and derivations are included to help the reader navigate through the subject with ease. Key features: General Aviation and UAV Propulsion Systems are presented in a new chapter Discusses Ultra-High Bypass and Geared Turbofan engines Presents alternative drop-in jet fuels Expands on engine components' design guidelines The end-of-chapter problem sets have been increased by nearly 50% and solutions are available on a companion website Presents a new section on engine performance testing and instrumentation Includes a new 10-Minute Quiz appendix (with 45 quizzes) that can be used as a continuous assessment and improvement tool in teaching/learning propulsion principles and concepts Includes a new appendix on Rules of Thumb and Trends in aircraft propulsion Aircraft Propulsion, Second Edition is a must-have textbook for graduate and undergraduate students, and is also an excellent source of information for researchers and practitioners in the aerospace and power industry.
Publisher: John Wiley & Sons
ISBN: 111880676X
Category : Technology & Engineering
Languages : en
Pages : 1052
Book Description
New edition of the successful textbook updated to include new material on UAVs, design guidelines in aircraft engine component systems and additional end of chapter problems Aircraft Propulsion, Second Edition follows the successful first edition textbook with comprehensive treatment of the subjects in airbreathing propulsion, from the basic principles to more advanced treatments in engine components and system integration. This new edition has been extensively updated to include a number of new and important topics. A chapter is now included on General Aviation and Uninhabited Aerial Vehicle (UAV) Propulsion Systems that includes a discussion on electric and hybrid propulsion. Propeller theory is added to the presentation of turboprop engines. A new section in cycle analysis treats Ultra-High Bypass (UHB) and Geared Turbofan engines. New material on drop-in biofuels and design for sustainability is added to refl ect the FAA’s 2025 Vision. In addition, the design guidelines in aircraft engine components are expanded to make the book user friendly for engine designers. Extensive review material and derivations are included to help the reader navigate through the subject with ease. Key features: General Aviation and UAV Propulsion Systems are presented in a new chapter Discusses Ultra-High Bypass and Geared Turbofan engines Presents alternative drop-in jet fuels Expands on engine components' design guidelines The end-of-chapter problem sets have been increased by nearly 50% and solutions are available on a companion website Presents a new section on engine performance testing and instrumentation Includes a new 10-Minute Quiz appendix (with 45 quizzes) that can be used as a continuous assessment and improvement tool in teaching/learning propulsion principles and concepts Includes a new appendix on Rules of Thumb and Trends in aircraft propulsion Aircraft Propulsion, Second Edition is a must-have textbook for graduate and undergraduate students, and is also an excellent source of information for researchers and practitioners in the aerospace and power industry.
Understanding Aerospace Chemical Propulsion
Author: H. S. Mukunda
Publisher:
ISBN: 9789385909429
Category : Jet propulsion
Languages : en
Pages : 0
Book Description
Explores aeronautical and space chemical propulsion. The book provides an understanding of propulsion systems through illustrative description of the systems; analysis of modeled systems; examination of the performance of real systems in this light; and a comparative assessment of aeronautical and space propulsion system elements.
Publisher:
ISBN: 9789385909429
Category : Jet propulsion
Languages : en
Pages : 0
Book Description
Explores aeronautical and space chemical propulsion. The book provides an understanding of propulsion systems through illustrative description of the systems; analysis of modeled systems; examination of the performance of real systems in this light; and a comparative assessment of aeronautical and space propulsion system elements.
A Collection of Technical Papers: 04-2614 - 04-2702
Author:
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 452
Book Description
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 452
Book Description
Report of NRL Progress
Author: Naval Research Laboratory (U.S.)
Publisher:
ISBN:
Category : Naval research
Languages : en
Pages : 66
Book Description
Publisher:
ISBN:
Category : Naval research
Languages : en
Pages : 66
Book Description