Eigenvalues, Multiplicities and Graphs

Eigenvalues, Multiplicities and Graphs PDF Author: Charles R. Johnson
Publisher: Cambridge University Press
ISBN: 1108547036
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject.

Eigenvalues, Multiplicities and Graphs

Eigenvalues, Multiplicities and Graphs PDF Author: Charles R. Johnson
Publisher: Cambridge University Press
ISBN: 1108547036
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject.

Eigenvalues, Multiplicities and Graphs

Eigenvalues, Multiplicities and Graphs PDF Author: Charles R. Johnson
Publisher: Cambridge University Press
ISBN: 110709545X
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
This book investigates the influence of the graph of a symmetric matrix on the multiplicities of its eigenvalues.

Combinatorial and Graph-Theoretical Problems in Linear Algebra

Combinatorial and Graph-Theoretical Problems in Linear Algebra PDF Author: Richard A. Brualdi
Publisher: Springer Science & Business Media
ISBN: 1461383544
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
This IMA Volume in Mathematics and its Applications COMBINATORIAL AND GRAPH-THEORETICAL PROBLEMS IN LINEAR ALGEBRA is based on the proceedings of a workshop that was an integral part of the 1991-92 IMA program on "Applied Linear Algebra." We are grateful to Richard Brualdi, George Cybenko, Alan George, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-long program. We especially thank Richard Brualdi, Shmuel Friedland, and Victor Klee for organizing this workshop and editing the proceedings. The financial support of the National Science Foundation made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE The 1991-1992 program of the Institute for Mathematics and its Applications (IMA) was Applied Linear Algebra. As part of this program, a workshop on Com binatorial and Graph-theoretical Problems in Linear Algebra was held on November 11-15, 1991. The purpose of the workshop was to bring together in an informal setting the diverse group of people who work on problems in linear algebra and matrix theory in which combinatorial or graph~theoretic analysis is a major com ponent. Many of the participants of the workshop enjoyed the hospitality of the IMA for the entire fall quarter, in which the emphasis was discrete matrix analysis.

Computational Algebra and Number Theory

Computational Algebra and Number Theory PDF Author: Wieb Bosma
Publisher: Springer Science & Business Media
ISBN: 9401711089
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.

Spectra of Graphs

Spectra of Graphs PDF Author: Andries E. Brouwer
Publisher: Springer Science & Business Media
ISBN: 1461419395
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. Spectra of Graphs is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included.

Spectra of Graphs

Spectra of Graphs PDF Author: Dragoš M. Cvetković
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
The theory of graph spectra can, in a way, be considered as an attempt to utilize linear algebra including, in particular, the well-developed theory of matrices for the purposes of graph theory and its applications. to the theory of matrices; on the contrary, it has its own characteristic features and specific ways of reasoning fully justifying it to be treated as a theory in its own right.

An Introduction to the Theory of Graph Spectra

An Introduction to the Theory of Graph Spectra PDF Author: Dragoš Cvetković
Publisher: Cambridge University Press
ISBN: 9780521134088
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
This introductory text explores the theory of graph spectra: a topic with applications across a wide range of subjects, including computer science, quantum chemistry and electrical engineering. The spectra examined here are those of the adjacency matrix, the Seidel matrix, the Laplacian, the normalized Laplacian and the signless Laplacian of a finite simple graph. The underlying theme of the book is the relation between the eigenvalues and structure of a graph. Designed as an introductory text for graduate students, or anyone using the theory of graph spectra, this self-contained treatment assumes only a little knowledge of graph theory and linear algebra. The authors include many new developments in the field which arise as a result of rapidly expanding interest in the area. Exercises, spectral data and proofs of required results are also provided. The end-of-chapter notes serve as a practical guide to the extensive bibliography of over 500 items.

Graphs and Matrices

Graphs and Matrices PDF Author: Ravindra B. Bapat
Publisher: Springer
ISBN: 1447165691
Category : Mathematics
Languages : en
Pages : 197

Get Book Here

Book Description
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.

Graph Energy

Graph Energy PDF Author: Xueliang Li
Publisher: Springer Science & Business Media
ISBN: 1461442206
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
This book is about graph energy. The authors have included many of the important results on graph energy, such as the complete solution to the conjecture on maximal energy of unicyclic graphs, the Wagner-Heuberger’s result on the energy of trees, the energy of random graphs or the approach to energy using singular values. It contains an extensive coverage of recent results and a gradual development of topics and the inclusion of complete proofs from most of the important recent results in the area. The latter fact makes it a valuable reference for researchers looking to get into the field of graph energy, further stimulating it with occasional inclusion of open problems. The book provides a comprehensive survey of all results and common proof methods obtained in this field with an extensive reference section. The book is aimed mainly towards mathematicians, both researchers and doctoral students, with interest in the field of mathematical chemistry.

Locating Eigenvalues in Graphs

Locating Eigenvalues in Graphs PDF Author: Carlos Hoppen
Publisher: Springer Nature
ISBN: 3031116984
Category : Mathematics
Languages : en
Pages : 142

Get Book Here

Book Description
This book focuses on linear time eigenvalue location algorithms for graphs. This subject relates to spectral graph theory, a field that combines tools and concepts of linear algebra and combinatorics, with applications ranging from image processing and data analysis to molecular descriptors and random walks. It has attracted a lot of attention and has since emerged as an area on its own. Studies in spectral graph theory seek to determine properties of a graph through matrices associated with it. It turns out that eigenvalues and eigenvectors have surprisingly many connections with the structure of a graph. This book approaches this subject under the perspective of eigenvalue location algorithms. These are algorithms that, given a symmetric graph matrix M and a real interval I, return the number of eigenvalues of M that lie in I. Since the algorithms described here are typically very fast, they allow one to quickly approximate the value of any eigenvalue, which is a basic step in most applications of spectral graph theory. Moreover, these algorithms are convenient theoretical tools for proving bounds on eigenvalues and their multiplicities, which was quite useful to solve longstanding open problems in the area. This book brings these algorithms together, revealing how similar they are in spirit, and presents some of their main applications. This work can be of special interest to graduate students and researchers in spectral graph theory, and to any mathematician who wishes to know more about eigenvalues associated with graphs. It can also serve as a compact textbook for short courses on the topic.