Author: Christian Bayer
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
We provide an efficient and accurate simulation scheme for the rough Heston model in the standard (H > 0) as well as the hyper-rough regime (H > -1/2). The scheme is based on low-dimensional Markovian approximations of the rough Heston process derived in [Bayer and Breneis, arXiv:2309.07023], and provides weak approximation to the rough Heston process. Numerical experiments show that the new scheme exhibits second order weak convergence, while the computational cost increases linear with respect to the number of time steps. In comparison, existing schemes based on discretization of the underlying stochastic Volterra integrals such as Gatheral's HQE scheme show a quadratic dependence of the computational cost. Extensive numerical tests for standard and path-dependent European options and Bermudan options show the method's accuracy and efficiency.
Efficient Option Pricing in the Rough Heston Model Using Weak Simulation Schemes
Author: Christian Bayer
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
We provide an efficient and accurate simulation scheme for the rough Heston model in the standard (H > 0) as well as the hyper-rough regime (H > -1/2). The scheme is based on low-dimensional Markovian approximations of the rough Heston process derived in [Bayer and Breneis, arXiv:2309.07023], and provides weak approximation to the rough Heston process. Numerical experiments show that the new scheme exhibits second order weak convergence, while the computational cost increases linear with respect to the number of time steps. In comparison, existing schemes based on discretization of the underlying stochastic Volterra integrals such as Gatheral's HQE scheme show a quadratic dependence of the computational cost. Extensive numerical tests for standard and path-dependent European options and Bermudan options show the method's accuracy and efficiency.
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
We provide an efficient and accurate simulation scheme for the rough Heston model in the standard (H > 0) as well as the hyper-rough regime (H > -1/2). The scheme is based on low-dimensional Markovian approximations of the rough Heston process derived in [Bayer and Breneis, arXiv:2309.07023], and provides weak approximation to the rough Heston process. Numerical experiments show that the new scheme exhibits second order weak convergence, while the computational cost increases linear with respect to the number of time steps. In comparison, existing schemes based on discretization of the underlying stochastic Volterra integrals such as Gatheral's HQE scheme show a quadratic dependence of the computational cost. Extensive numerical tests for standard and path-dependent European options and Bermudan options show the method's accuracy and efficiency.
Derivatives in Financial Markets with Stochastic Volatility
Author: Jean-Pierre Fouque
Publisher: Cambridge University Press
ISBN: 9780521791632
Category : Business & Economics
Languages : en
Pages : 222
Book Description
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Publisher: Cambridge University Press
ISBN: 9780521791632
Category : Business & Economics
Languages : en
Pages : 222
Book Description
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Monte Carlo Methods and Models in Finance and Insurance
Author: Ralf Korn
Publisher: CRC Press
ISBN: 1420076191
Category : Business & Economics
Languages : en
Pages : 485
Book Description
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Rom
Publisher: CRC Press
ISBN: 1420076191
Category : Business & Economics
Languages : en
Pages : 485
Book Description
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Rom
Option Valuation Under Stochastic Volatility
Author: Alan L. Lewis
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 372
Book Description
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 372
Book Description
Numerical Methods in Finance and Economics
Author: Paolo Brandimarte
Publisher: John Wiley & Sons
ISBN: 1118625579
Category : Mathematics
Languages : en
Pages : 501
Book Description
A state-of-the-art introduction to the powerful mathematical and statistical tools used in the field of finance The use of mathematical models and numerical techniques is a practice employed by a growing number of applied mathematicians working on applications in finance. Reflecting this development, Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition bridges the gap between financial theory and computational practice while showing readers how to utilize MATLAB?--the powerful numerical computing environment--for financial applications. The author provides an essential foundation in finance and numerical analysis in addition to background material for students from both engineering and economics perspectives. A wide range of topics is covered, including standard numerical analysis methods, Monte Carlo methods to simulate systems affected by significant uncertainty, and optimization methods to find an optimal set of decisions. Among this book's most outstanding features is the integration of MATLAB?, which helps students and practitioners solve relevant problems in finance, such as portfolio management and derivatives pricing. This tutorial is useful in connecting theory with practice in the application of classical numerical methods and advanced methods, while illustrating underlying algorithmic concepts in concrete terms. Newly featured in the Second Edition: * In-depth treatment of Monte Carlo methods with due attention paid to variance reduction strategies * New appendix on AMPL in order to better illustrate the optimization models in Chapters 11 and 12 * New chapter on binomial and trinomial lattices * Additional treatment of partial differential equations with two space dimensions * Expanded treatment within the chapter on financial theory to provide a more thorough background for engineers not familiar with finance * New coverage of advanced optimization methods and applications later in the text Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition presents basic treatments and more specialized literature, and it also uses algebraic languages, such as AMPL, to connect the pencil-and-paper statement of an optimization model with its solution by a software library. Offering computational practice in both financial engineering and economics fields, this book equips practitioners with the necessary techniques to measure and manage risk.
Publisher: John Wiley & Sons
ISBN: 1118625579
Category : Mathematics
Languages : en
Pages : 501
Book Description
A state-of-the-art introduction to the powerful mathematical and statistical tools used in the field of finance The use of mathematical models and numerical techniques is a practice employed by a growing number of applied mathematicians working on applications in finance. Reflecting this development, Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition bridges the gap between financial theory and computational practice while showing readers how to utilize MATLAB?--the powerful numerical computing environment--for financial applications. The author provides an essential foundation in finance and numerical analysis in addition to background material for students from both engineering and economics perspectives. A wide range of topics is covered, including standard numerical analysis methods, Monte Carlo methods to simulate systems affected by significant uncertainty, and optimization methods to find an optimal set of decisions. Among this book's most outstanding features is the integration of MATLAB?, which helps students and practitioners solve relevant problems in finance, such as portfolio management and derivatives pricing. This tutorial is useful in connecting theory with practice in the application of classical numerical methods and advanced methods, while illustrating underlying algorithmic concepts in concrete terms. Newly featured in the Second Edition: * In-depth treatment of Monte Carlo methods with due attention paid to variance reduction strategies * New appendix on AMPL in order to better illustrate the optimization models in Chapters 11 and 12 * New chapter on binomial and trinomial lattices * Additional treatment of partial differential equations with two space dimensions * Expanded treatment within the chapter on financial theory to provide a more thorough background for engineers not familiar with finance * New coverage of advanced optimization methods and applications later in the text Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition presents basic treatments and more specialized literature, and it also uses algebraic languages, such as AMPL, to connect the pencil-and-paper statement of an optimization model with its solution by a software library. Offering computational practice in both financial engineering and economics fields, this book equips practitioners with the necessary techniques to measure and manage risk.
Monte Carlo Methods in Financial Engineering
Author: Paul Glasserman
Publisher: Springer Science & Business Media
ISBN: 0387216170
Category : Mathematics
Languages : en
Pages : 603
Book Description
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
Publisher: Springer Science & Business Media
ISBN: 0387216170
Category : Mathematics
Languages : en
Pages : 603
Book Description
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
Mathematical Methods for Foreign Exchange
Author: Alexander Lipton
Publisher: World Scientific
ISBN: 9789810246150
Category : Business & Economics
Languages : en
Pages : 702
Book Description
This comprehensive book presents a systematic and practically oriented approach to mathematical modeling in finance, particularly in the foreign exchange context. It describes all the relevant aspects of financial engineering, including derivative pricing, in detail. The book is self-contained, with the necessary mathematical, economic, and trading background carefully explained. In addition to the lucid treatment of the standard material, it describes many original results. The book can be used both as a text for students of financial engineering, and as a basic reference for risk managers, traders, and academics.
Publisher: World Scientific
ISBN: 9789810246150
Category : Business & Economics
Languages : en
Pages : 702
Book Description
This comprehensive book presents a systematic and practically oriented approach to mathematical modeling in finance, particularly in the foreign exchange context. It describes all the relevant aspects of financial engineering, including derivative pricing, in detail. The book is self-contained, with the necessary mathematical, economic, and trading background carefully explained. In addition to the lucid treatment of the standard material, it describes many original results. The book can be used both as a text for students of financial engineering, and as a basic reference for risk managers, traders, and academics.
Finite Difference Methods in Financial Engineering
Author: Daniel J. Duffy
Publisher: John Wiley & Sons
ISBN: 1118856481
Category : Business & Economics
Languages : en
Pages : 452
Book Description
The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
Publisher: John Wiley & Sons
ISBN: 1118856481
Category : Business & Economics
Languages : en
Pages : 452
Book Description
The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
FX Derivatives Trader School
Author: Giles Jewitt
Publisher: John Wiley & Sons
ISBN: 1118967453
Category : Business & Economics
Languages : en
Pages : 629
Book Description
An essential guide to real-world derivatives trading FX Derivatives Trader School is the definitive guide to the technical and practical knowledge required for successful foreign exchange derivatives trading. Accessible in style and comprehensive in coverage, the book guides the reader through both basic and advanced derivative pricing and risk management topics. The basics of financial markets and trading are covered, plus practical derivatives mathematics is introduced with reference to real-world trading and risk management. Derivative contracts are covered in detail from a trader's perspective using risk profiles and pricing under different derivative models. Analysis is approached generically to enable new products to be understood by breaking the risk into fundamental building blocks. To assist with learning, the book also contains Excel practicals which will deepen understanding and help build useful skills. The book covers of a wide variety of topics, including: Derivative exposures within risk management Volatility surface construction Implied volatility and correlation risk Practical tips for students on trading internships and junior traders Market analysis techniques FX derivatives trading requires mathematical aptitude, risk management skill, and the ability to work quickly and accurately under pressure. There is a tremendous gap between option pricing formulas and the knowledge required to be a successful derivatives trader. FX Derivatives Trader School is unique in bridging that gap.
Publisher: John Wiley & Sons
ISBN: 1118967453
Category : Business & Economics
Languages : en
Pages : 629
Book Description
An essential guide to real-world derivatives trading FX Derivatives Trader School is the definitive guide to the technical and practical knowledge required for successful foreign exchange derivatives trading. Accessible in style and comprehensive in coverage, the book guides the reader through both basic and advanced derivative pricing and risk management topics. The basics of financial markets and trading are covered, plus practical derivatives mathematics is introduced with reference to real-world trading and risk management. Derivative contracts are covered in detail from a trader's perspective using risk profiles and pricing under different derivative models. Analysis is approached generically to enable new products to be understood by breaking the risk into fundamental building blocks. To assist with learning, the book also contains Excel practicals which will deepen understanding and help build useful skills. The book covers of a wide variety of topics, including: Derivative exposures within risk management Volatility surface construction Implied volatility and correlation risk Practical tips for students on trading internships and junior traders Market analysis techniques FX derivatives trading requires mathematical aptitude, risk management skill, and the ability to work quickly and accurately under pressure. There is a tremendous gap between option pricing formulas and the knowledge required to be a successful derivatives trader. FX Derivatives Trader School is unique in bridging that gap.
Global Sensitivity Analysis
Author: Andrea Saltelli
Publisher: John Wiley & Sons
ISBN: 9780470725177
Category : Mathematics
Languages : en
Pages : 304
Book Description
Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.
Publisher: John Wiley & Sons
ISBN: 9780470725177
Category : Mathematics
Languages : en
Pages : 304
Book Description
Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.