Author: Bas Edixhoven
Publisher: Springer
ISBN: 3540482083
Category : Mathematics
Languages : en
Pages : 136
Book Description
The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties", Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.
Diophantine Approximation and Abelian Varieties
Author: Bas Edixhoven
Publisher: Springer
ISBN: 3540482083
Category : Mathematics
Languages : en
Pages : 136
Book Description
The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties", Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.
Publisher: Springer
ISBN: 3540482083
Category : Mathematics
Languages : en
Pages : 136
Book Description
The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties", Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.
Diophantine Approximation and Abelian Varieties
Author: Bas Edixhoven
Publisher: Springer Science & Business Media
ISBN: 3540575286
Category : Mathematics
Languages : en
Pages : 136
Book Description
The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties", Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.
Publisher: Springer Science & Business Media
ISBN: 3540575286
Category : Mathematics
Languages : en
Pages : 136
Book Description
The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties", Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.
Diophantine Geometry
Author: Marc Hindry
Publisher: Springer Science & Business Media
ISBN: 1461212103
Category : Mathematics
Languages : en
Pages : 574
Book Description
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Publisher: Springer Science & Business Media
ISBN: 1461212103
Category : Mathematics
Languages : en
Pages : 574
Book Description
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 1556080085
Category : Mathematics
Languages : en
Pages : 556
Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Publisher: Springer Science & Business Media
ISBN: 1556080085
Category : Mathematics
Languages : en
Pages : 556
Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Applications of Diophantine Approximation to Integral Points and Transcendence
Author: Pietro Corvaja
Publisher: Cambridge University Press
ISBN: 1108424945
Category : Mathematics
Languages : en
Pages : 209
Book Description
Introduction to Diophantine approximation and equations focusing on Schmidt's subspace theorem, with applications to transcendence.
Publisher: Cambridge University Press
ISBN: 1108424945
Category : Mathematics
Languages : en
Pages : 209
Book Description
Introduction to Diophantine approximation and equations focusing on Schmidt's subspace theorem, with applications to transcendence.
On Some Applications of Diophantine Approximations
Author: Umberto Zannier
Publisher: Springer
ISBN: 8876425209
Category : Mathematics
Languages : en
Pages : 169
Book Description
This book consists mainly of the translation, by C. Fuchs, of the 1929 landmark paper "Über einige Anwendungen diophantischer Approximationen" by C.L. Siegel. The paper contains proofs of most important results in transcendence theory and diophantine analysis, notably Siegel’s celebrated theorem on integral points on algebraic curves. Many modern versions of Siegel’s proof have appeared, but none seem to faithfully reproduce all features of the original one. This translation makes Siegel’s original ideas and proofs available for the first time in English. The volume also contains the original version of the paper (in German) and an article by the translator and U. Zannier, commenting on some aspects of the evolution of this field following Siegel’s paper. To end, it presents three modern proofs of Siegel’s theorem on integral points.
Publisher: Springer
ISBN: 8876425209
Category : Mathematics
Languages : en
Pages : 169
Book Description
This book consists mainly of the translation, by C. Fuchs, of the 1929 landmark paper "Über einige Anwendungen diophantischer Approximationen" by C.L. Siegel. The paper contains proofs of most important results in transcendence theory and diophantine analysis, notably Siegel’s celebrated theorem on integral points on algebraic curves. Many modern versions of Siegel’s proof have appeared, but none seem to faithfully reproduce all features of the original one. This translation makes Siegel’s original ideas and proofs available for the first time in English. The volume also contains the original version of the paper (in German) and an article by the translator and U. Zannier, commenting on some aspects of the evolution of this field following Siegel’s paper. To end, it presents three modern proofs of Siegel’s theorem on integral points.
Nevanlinna Theory in Several Complex Variables and Diophantine Approximation
Author: Junjiro Noguchi
Publisher: Springer Science & Business Media
ISBN: 4431545719
Category : Mathematics
Languages : en
Pages : 425
Book Description
The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7.
Publisher: Springer Science & Business Media
ISBN: 4431545719
Category : Mathematics
Languages : en
Pages : 425
Book Description
The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7.
Diophantine Approximation
Author: Wolfgang M. Schmidt
Publisher: Springer Science & Business Media
ISBN: 3540403922
Category : Diophantine analysis
Languages : en
Pages : 359
Book Description
Publisher: Springer Science & Business Media
ISBN: 3540403922
Category : Diophantine analysis
Languages : en
Pages : 359
Book Description
Solving $S$-Unit, Mordell, Thue, Thue–Mahler and Generalized Ramanujan–Nagell Equations via the Shimura–Taniyama Conjecture
Author: Rafael von Känel
Publisher: American Mathematical Society
ISBN: 1470464160
Category : Mathematics
Languages : en
Pages : 154
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470464160
Category : Mathematics
Languages : en
Pages : 154
Book Description
View the abstract.
Nevanlinna Theory And Its Relation To Diophantine Approximation (Second Edition)
Author: Min Ru
Publisher: World Scientific
ISBN: 9811233527
Category : Mathematics
Languages : en
Pages : 443
Book Description
This book describes the theories and developments in Nevanlinna theory and Diophantine approximation. Although these two subjects belong to the different areas: one in complex analysis and one in number theory, it has been discovered that a number of striking similarities exist between these two subjects. A growing understanding of these connections has led to significant advances in both fields. Outstanding conjectures from decades ago are being solved.Over the past 20 years since the first edition appeared, there have been many new and significant developments. The new edition greatly expands the materials. In addition, three new chapters were added. In particular, the theory of algebraic curves, as well as the algebraic hyperbolicity, which provided the motivation for the Nevanlinna theory.
Publisher: World Scientific
ISBN: 9811233527
Category : Mathematics
Languages : en
Pages : 443
Book Description
This book describes the theories and developments in Nevanlinna theory and Diophantine approximation. Although these two subjects belong to the different areas: one in complex analysis and one in number theory, it has been discovered that a number of striking similarities exist between these two subjects. A growing understanding of these connections has led to significant advances in both fields. Outstanding conjectures from decades ago are being solved.Over the past 20 years since the first edition appeared, there have been many new and significant developments. The new edition greatly expands the materials. In addition, three new chapters were added. In particular, the theory of algebraic curves, as well as the algebraic hyperbolicity, which provided the motivation for the Nevanlinna theory.