Effect of Sulphide on Enhanced Biological Phosphorus Removal

Effect of Sulphide on Enhanced Biological Phosphorus Removal PDF Author: Francisco Javier Rubio Rincon
Publisher: CRC Press
ISBN: 1351652710
Category : Technology & Engineering
Languages : en
Pages : 210

Get Book Here

Book Description
The enhanced biological removal of phosphorus (EBPR) is a popular process due to high removal efficiency, low operational costs, and the possibility of phosphorus recovery. Nevertheless, the stability of the EBPR depends on different factors such as: temperature, pH, and the presence of toxic compounds. While extensive studies have researched the effects of temperature and pH on EBPR systems, little is known about the effects of different toxic compounds on EBPR. For example, sulphide has shown to inhibit different microbial activities in the WWTP, but the knowledge about its effects on EBPR is limited. Whereas the sulphide generated in the sewage can cause a shock effect on EBPR, the continuously exposure to sulphide potentially generated in WWTP can cause the acclimatization and adaptation of the biomass. This research suggests that sulphate reducing bacteria can proliferate in WWTP, as they are reversibly inhibited by the recirculation of sludge through anaerobic-anoxic-oxic conditions. The research enhances the understanding of the effect of sulphide on the anaerobic-oxic metabolism of PAO. It suggests that the filamentous bacteria Thiothrix caldifontis could play an important role in the biological removal of phosphorus. It questions the ability of PAO to generate energy from nitrate respiration and its use for the anoxic phosphorus uptake. Thus, the results obtained in this research can be used to understand the stability of the EBPR process under anaerobic-anoxic-oxic conditions, especially when exposed to the presence of sulphide.

Effect of Sulphide on Enhanced Biological Phosphorus Removal

Effect of Sulphide on Enhanced Biological Phosphorus Removal PDF Author: Francisco Javier Rubio Rincon
Publisher: CRC Press
ISBN: 1351652710
Category : Technology & Engineering
Languages : en
Pages : 210

Get Book Here

Book Description
The enhanced biological removal of phosphorus (EBPR) is a popular process due to high removal efficiency, low operational costs, and the possibility of phosphorus recovery. Nevertheless, the stability of the EBPR depends on different factors such as: temperature, pH, and the presence of toxic compounds. While extensive studies have researched the effects of temperature and pH on EBPR systems, little is known about the effects of different toxic compounds on EBPR. For example, sulphide has shown to inhibit different microbial activities in the WWTP, but the knowledge about its effects on EBPR is limited. Whereas the sulphide generated in the sewage can cause a shock effect on EBPR, the continuously exposure to sulphide potentially generated in WWTP can cause the acclimatization and adaptation of the biomass. This research suggests that sulphate reducing bacteria can proliferate in WWTP, as they are reversibly inhibited by the recirculation of sludge through anaerobic-anoxic-oxic conditions. The research enhances the understanding of the effect of sulphide on the anaerobic-oxic metabolism of PAO. It suggests that the filamentous bacteria Thiothrix caldifontis could play an important role in the biological removal of phosphorus. It questions the ability of PAO to generate energy from nitrate respiration and its use for the anoxic phosphorus uptake. Thus, the results obtained in this research can be used to understand the stability of the EBPR process under anaerobic-anoxic-oxic conditions, especially when exposed to the presence of sulphide.

Effect of Sulphide on Enhanced Biological Phosphorus Removal

Effect of Sulphide on Enhanced Biological Phosphorus Removal PDF Author: Francisco Rubio Rincon
Publisher:
ISBN: 9781351638364
Category : Sewage
Languages : en
Pages : 210

Get Book Here

Book Description
The enhanced biological removal of phosphorus (EBPR) is a popular process due to high removal efficiency, low operational costs, and the possibility of phosphorus recovery. Nevertheless, the stability of the EBPR depends on different factors such as: temperature, pH, and the presence of toxic compounds. While extensive studies have researched the effects of temperature and pH on EBPR systems, little is known about the effects of different toxic compounds on EBPR. For example, sulphide has shown to inhibit different microbial activities in the WWTP, but the knowledge about its effects on EBPR is limited. Whereas the sulphide generated in the sewage can cause a shock effect on EBPR, the continuously exposure to sulphide potentially generated in WWTP can cause the acclimatization and adaptation of the biomass.This research suggests that sulphate reducing bacteria can Profiliferate in WWTP, as they are reversibly inhibited by the recirculation of sludge through anaerobic-anoxic-oxic conditions. The research enhances the understanding of the effect of sulphide on the anaerobic-oxic metabolism of PAO. It suggests that the filamentous bacteria Thiothrix caldifontis could play an important role in the biological removal of phosphorus. It questions the ability of PAO to generate energy from nitrate respiration and its use for the anoxic phosphorus uptake. Thus, the results obtained in this research can be used to understand the stability of the EBPR process under anaerobic-anoxic-oxic conditions, especially when exposed to the presence of sulphide.--Provided by publisher.

Effect of Sulphide on Enhanced Biological Phosphorus Removal

Effect of Sulphide on Enhanced Biological Phosphorus Removal PDF Author: Francisco Javier Rubio Rincon
Publisher: CRC Press
ISBN: 135164808X
Category : Technology & Engineering
Languages : en
Pages : 293

Get Book Here

Book Description
The enhanced biological removal of phosphorus (EBPR) is a popular process due to high removal efficiency, low operational costs, and the possibility of phosphorus recovery. Nevertheless, the stability of the EBPR depends on different factors such as: temperature, pH, and the presence of toxic compounds. While extensive studies have researched the effects of temperature and pH on EBPR systems, little is known about the effects of different toxic compounds on EBPR. For example, sulphide has shown to inhibit different microbial activities in the WWTP, but the knowledge about its effects on EBPR is limited. Whereas the sulphide generated in the sewage can cause a shock effect on EBPR, the continuously exposure to sulphide potentially generated in WWTP can cause the acclimatization and adaptation of the biomass. This research suggests that sulphate reducing bacteria can proliferate in WWTP, as they are reversibly inhibited by the recirculation of sludge through anaerobic-anoxic-oxic conditions. The research enhances the understanding of the effect of sulphide on the anaerobic-oxic metabolism of PAO. It suggests that the filamentous bacteria Thiothrix caldifontis could play an important role in the biological removal of phosphorus. It questions the ability of PAO to generate energy from nitrate respiration and its use for the anoxic phosphorus uptake. Thus, the results obtained in this research can be used to understand the stability of the EBPR process under anaerobic-anoxic-oxic conditions, especially when exposed to the presence of sulphide.

Denitrifying Sulfur Conversion Associated Enhanced Biological Phosphorus Removal (DS-EBPR) Process for High-temperature, Saline Sewage Treatment

Denitrifying Sulfur Conversion Associated Enhanced Biological Phosphorus Removal (DS-EBPR) Process for High-temperature, Saline Sewage Treatment PDF Author: Haiguang Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 138

Get Book Here

Book Description


Denitrifying Sulfur Conversion-associated Enhanced Biological Phosphorus Removal

Denitrifying Sulfur Conversion-associated Enhanced Biological Phosphorus Removal PDF Author: Gang Guo
Publisher:
ISBN:
Category :
Languages : en
Pages : 146

Get Book Here

Book Description


Investigation of Enhanced Biological Phosphorus Removal at Different Temperatures

Investigation of Enhanced Biological Phosphorus Removal at Different Temperatures PDF Author: Liang-Ming Whang
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Get Book Here

Book Description


Biological Phosphorus Removal Activated Sludge Process in Warm Climates

Biological Phosphorus Removal Activated Sludge Process in Warm Climates PDF Author: Cao Ye Shi
Publisher: IWA Publishing
ISBN: 1843393816
Category : Science
Languages : en
Pages : 151

Get Book Here

Book Description
Special Offer: Cao Ye Shi Author Set - Buy all three books together and save a total £76! Biological Phosphorus Removal Activated Sludge Process in Warm Climates presents the results of detailed research on the Enhanced Biological Phosphorus Removal (EBPR) activated sludge process under warm climate conditions (20oC - 30oC), which is part of the R & D program of Public Utilities Board (PUB) Singapore. The investigations and studies presented in this book are application-oriented, but at the same time the studies aim at an insightful understanding of the EBPR with the knowledge of the latest development in academic field. The focus points are: EBPR performance of laboratory-scale and full-scale activated sludge processes under the site conditions in warm climates The carbon competition and distribution between PAO and GAO (and denitrifiers) in the process The stoichiometry and kinetics of P-release, COD uptake in the anaerobic environment and P-uptake in the aerobic environment under different temperatures and operating conditions PAO and GAO population fractions, shift and dominance studies using FISH and batch tests The inter-relationships between the system performance, process design and the microbial community EBPR for industrial wastewater (high ratio of feed COD/P) treatment under warm climates. Together with the preceding book – Biological Nitrogen Removal Activated Sludge Process in Warm Climates – published by IWA in 2008, this book fills the gap of biological nutrient (nitrogen and phosphorus) removal in warm climates and provides unique experiences and knowledge for Process and design researchers and engineers in wastewater research, students and academic staff in Civil/Sanitation/Environment Departments, as well as Managers, Engineers and Consultants in water companies and water utilities. Visit the IWA WaterWiki to read and share material related to this title: http://www.iwawaterwiki.org/xwiki/bin/view/Articles/SELECTIONOFDOMESTICWASTEWATERTREATMENTSYSTEMSINWARMCLIMATEREGIONS

Effect of Fermentable Substances on the Enhanced Biological Phosphorus Removal Process

Effect of Fermentable Substances on the Enhanced Biological Phosphorus Removal Process PDF Author: Artur Tomasz Mielczarek
Publisher:
ISBN:
Category :
Languages : en
Pages : 77

Get Book Here

Book Description


The Effects of Temperature and Mean Cell Residence Time on Enhanced Biological Phosphorus Removal by Activated Sludge

The Effects of Temperature and Mean Cell Residence Time on Enhanced Biological Phosphorus Removal by Activated Sludge PDF Author: Daniel Mamais
Publisher:
ISBN:
Category :
Languages : en
Pages : 442

Get Book Here

Book Description


Effects of Long Term Starvation on Enhanced Biological Phosphorus Removal in Activated Sludge

Effects of Long Term Starvation on Enhanced Biological Phosphorus Removal in Activated Sludge PDF Author: Carlos Lopez Larios
Publisher:
ISBN:
Category :
Languages : en
Pages : 190

Get Book Here

Book Description