Effect of Microscopic Defects on Superconducting Properties of High Purity Niobium Used for SRF Cavities

Effect of Microscopic Defects on Superconducting Properties of High Purity Niobium Used for SRF Cavities PDF Author: Mingmin Wang
Publisher:
ISBN: 9781658423939
Category : Electronic dissertations
Languages : en
Pages : 193

Get Book Here

Book Description
High purity niobium has been used to fabricate superconducting radio-frequency (SRF) cavities for linear particle accelerator applications for decades due to its high critical temperature (9.3 K) and critical magnetic field. Great progress has been made in achieving high accelerating gradients and quality factors (a measure of efficiency). However, the performance of Nb cavities still suffers from the variability of the material such that high quality factors and accelerating gradients cannot be consistently produced.Trapped magnetic flux is well known for causing significant radio-frequency losses. Both local flux penetration and flux trapping indicate the local suppression of superconductivity. Magnetic flux from both unshielded earth field and thermoelectric currents can be trapped when a cavity is cooled through its superconducting transition temperature. Microstructural defects including hydrogen, grain boundaries, and dislocations are possible causes for flux trapping. However, the details of magnetic flux trapping mechanisms and conditions that enable it are still not clear. Research on this topic has been very active in the SRF community. Cavity studies on flux expulsion after different heat treatments and cooldown procedures have been performed in recent years, but the study of flux trapping mechanisms at the microscopic level is still lacking.In order to study the effect of microscopic defects on flux trapping, single crystal and bicrystal samples were designed with strategically chosen tensile axes to intentionally introduce defects by a 5% tensile strain. Magneto-Optical (MO) Imaging was used to visualize locations where magnetic flux was trapped, and the dislocation substructures were studied using Electron Channeling Contrast Imaging (ECCI).The results show that high angle grain boundaries (HAGB) and low angle grain boundaries (LAGBs) have different flux penetration behaviors. LAGBS could be hydrogen segregation sites leading to precipitation of normal conducting hydrides along LAGBs at ~100-130 K during cooling. In hydrogen contaminated single-crystal samples, large hydride scars (locations where a hydride formed and then dissolved during heating) were observed both at the LAGBs and within the grain after MO cooling; however, only hydrides at the LAGBs appeared to cause premature flux penetration. Flux trapping related to LAGBs could still be observed after the heat treatment removed most of the hydrogen. By contrast, the flux penetration along a HAGB could be turned off by heat treatment that removed hydrogen and restored by reintroducing hydrogen into the sample. This work suggests that HAGBs are not as effective at causing flux penetration or trapping as hydrides and LAGBs.Some deformed bi-crystal samples show correlations between a larger amount of deformation or a higher density of dislocations and more trapped flux. Deformation led to the development of dislocation substructures; however, the effect of dislocation arrangements on flux penetration could not be observed in the current work. Further study with flux measurement techniques of a higher resolution and sensitivity is necessary to understand what kinds of dislocation substructures are most likely to cause flux penetration.

Effect of Microscopic Defects on Superconducting Properties of High Purity Niobium Used for SRF Cavities

Effect of Microscopic Defects on Superconducting Properties of High Purity Niobium Used for SRF Cavities PDF Author: Mingmin Wang
Publisher:
ISBN: 9781658423939
Category : Electronic dissertations
Languages : en
Pages : 193

Get Book Here

Book Description
High purity niobium has been used to fabricate superconducting radio-frequency (SRF) cavities for linear particle accelerator applications for decades due to its high critical temperature (9.3 K) and critical magnetic field. Great progress has been made in achieving high accelerating gradients and quality factors (a measure of efficiency). However, the performance of Nb cavities still suffers from the variability of the material such that high quality factors and accelerating gradients cannot be consistently produced.Trapped magnetic flux is well known for causing significant radio-frequency losses. Both local flux penetration and flux trapping indicate the local suppression of superconductivity. Magnetic flux from both unshielded earth field and thermoelectric currents can be trapped when a cavity is cooled through its superconducting transition temperature. Microstructural defects including hydrogen, grain boundaries, and dislocations are possible causes for flux trapping. However, the details of magnetic flux trapping mechanisms and conditions that enable it are still not clear. Research on this topic has been very active in the SRF community. Cavity studies on flux expulsion after different heat treatments and cooldown procedures have been performed in recent years, but the study of flux trapping mechanisms at the microscopic level is still lacking.In order to study the effect of microscopic defects on flux trapping, single crystal and bicrystal samples were designed with strategically chosen tensile axes to intentionally introduce defects by a 5% tensile strain. Magneto-Optical (MO) Imaging was used to visualize locations where magnetic flux was trapped, and the dislocation substructures were studied using Electron Channeling Contrast Imaging (ECCI).The results show that high angle grain boundaries (HAGB) and low angle grain boundaries (LAGBs) have different flux penetration behaviors. LAGBS could be hydrogen segregation sites leading to precipitation of normal conducting hydrides along LAGBs at ~100-130 K during cooling. In hydrogen contaminated single-crystal samples, large hydride scars (locations where a hydride formed and then dissolved during heating) were observed both at the LAGBs and within the grain after MO cooling; however, only hydrides at the LAGBs appeared to cause premature flux penetration. Flux trapping related to LAGBs could still be observed after the heat treatment removed most of the hydrogen. By contrast, the flux penetration along a HAGB could be turned off by heat treatment that removed hydrogen and restored by reintroducing hydrogen into the sample. This work suggests that HAGBs are not as effective at causing flux penetration or trapping as hydrides and LAGBs.Some deformed bi-crystal samples show correlations between a larger amount of deformation or a higher density of dislocations and more trapped flux. Deformation led to the development of dislocation substructures; however, the effect of dislocation arrangements on flux penetration could not be observed in the current work. Further study with flux measurement techniques of a higher resolution and sensitivity is necessary to understand what kinds of dislocation substructures are most likely to cause flux penetration.

The Effect of Defects on Functional Properties of Niobium for Superconducting Radio-frequency Cavities

The Effect of Defects on Functional Properties of Niobium for Superconducting Radio-frequency Cavities PDF Author: Pulkit Garg
Publisher:
ISBN:
Category : Grain boundaries
Languages : en
Pages : 97

Get Book Here

Book Description
Niobium is the primary material for fabricating superconducting radio-frequency (SRF) cavities. However, presence of impurities and defects degrade the superconducting behavior of niobium twofold, first by nucleating non-superconducting phases and second by increasing the residual surface resistance of cavities. In particular, niobium absorbs hydrogen during cavity fabrication and promotes precipitation of non-superconducting niobium hydride phases. Additionally, magnetic flux trapping at defects leads to a normal conducting (non-superconducting) core which increases surface resistance and negatively affects niobium performance for superconducting applications. However, undelaying mechanisms related to hydride formation and dissolution along with defect interaction with magnetic fields is still unclear. Therefore, this dissertation aims to investigate the role of defects and impurities on functional properties of niobium for SRF cavities using first-principles methods. Here, density functional theory calculations revealed that nitrogen addition suppressed hydrogen absorption interstitially and at grain boundaries, and it also decreased the energetic stability of niobium hydride precipitates present in niobium. Further, hydrogen segregation at the screw dislocation was observed to transform the dislocation core structure and increase the barrier for screw dislocation motion. Valence charge transfer calculations displayed a strong tendency of nitrogen to accumulate charge around itself, thereby decreasing the strength of covalent bonds between niobium and hydrogen leading to a very unstable state for interstitial hydrogen and hydrides. Thus, presence of nitrogen during processing plays a critical role in controlling hydride precipitation and subsequent SRF properties. First-principles methods were further implemented to gain a theoretical perspective about the experimental observations that lattice defects are effective at trapping magnetic flux in high-purity superconducting niobium. Full-potential linear augmented plane-wave methods were used to analyze the effects of magnetic field on the superconducting state surrounding these defects. A considerable amount of trapped flux was obtained at the dislocation core and grain boundaries which can be attributed to significantly different electronic structure of defects as compared to bulk niobium. Electron redistribution at defects enhances non-paramagnetic effects that perturb superconductivity, resulting in local conditions suitable for flux trapping. Therefore, controlling accumulation or depletion of charge at the defects could mitigate these tendencies and aid in improving superconductive behavior of niobium.

Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities

Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 13

Get Book Here

Book Description
It is important to distinguish among the properties of niobium, the ones that are related to the cavity's SRF performances, the formability of the material, and the mechanical behavior of the formed cavity. In general, the properties that dictate each of the above mentioned characteristics have a detrimental effect on one another and in order to preserve the superconducting properties without subduing the mechanical behavior, a balance has to be established. Depending on the applications, some parameters become less important and an understanding of the physical origin of the requirements might help in this optimization. SRF applications require high purity niobium (high RRR), but pure niobium is very soft from fabrication viewpoint. Moreover conventional fabrication techniques tend to override the effects of any metallurgical process meant to strengthen it. As those treatments dramatically affect the forming of the material they should be avoided. These unfavorable mechanical properties have to be accounted for in the design of the cavities rather than in the material specification. The aim of this paper is to review the significance of the important mechanical properties used to characterize niobium and to present the optimal range of values. Most of the following information deals with the specification of sheets for cell forming unless otherwise noted.

Superconducting Properties of Niobium Radio-frequency Cavities

Superconducting Properties of Niobium Radio-frequency Cavities PDF Author: Gianluigi Ciovati
Publisher: LAP Lambert Academic Publishing
ISBN: 9783843387439
Category :
Languages : en
Pages : 244

Get Book Here

Book Description
Superconducting radio-frequency (SRF) cavities are used to increase the energy of a charged particle beam in particle accelerators throughout the world. Bulk niobium is the material of choice to fabricate SRF cavities and their performance at cryogenic temperatures is characterized by a non-linearity of the surface resistance as a function of the RF field, in absence of field emission, which limits the operational accelerating gradient. This book presents the results on the investigation of such non-linearity in cavities which received different surface and bulk treatments as well as cavities made of single-crystal niobium. The experimental methods include measurements of the surface impedance as a function of temperature, of the quality factor as a function of the RF field below 4.2 K, and the excitation of different resonant modes. A thermometry system was used to better characterize the loss mechanisms. This book consists of the author's PhD dissertation at Old Dominion University (ODU) under the supervision of Prof. Colm T. Whelan of ODU and Dr. Peter Kneisel of Jefferson Lab. This book should be useful to students or young researchers in the field of SRF for accelerators.

The Superconducting Properties of High Purity Niobium

The Superconducting Properties of High Purity Niobium PDF Author: Thorsten Fredrick Stromberg
Publisher:
ISBN:
Category : Niobium
Languages : en
Pages : 206

Get Book Here

Book Description


The Effect of Cold Work on the Superconducting Properties of High Purity Polycrystalline Niobium

The Effect of Cold Work on the Superconducting Properties of High Purity Polycrystalline Niobium PDF Author: Loren Courtland Skinner
Publisher:
ISBN:
Category :
Languages : en
Pages : 34

Get Book Here

Book Description


Investigation of the Superconducting Properties of Niobium Radio-frequency Cavities

Investigation of the Superconducting Properties of Niobium Radio-frequency Cavities PDF Author: Gianluigi Ciovati
Publisher:
ISBN:
Category : Niobium
Languages : en
Pages : 398

Get Book Here

Book Description


Modifications of Superconducting Properties of Niobium Caused by Nitrogen Doping Recipes for High Q Cavities

Modifications of Superconducting Properties of Niobium Caused by Nitrogen Doping Recipes for High Q Cavities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A study is presented on the superconducting properties of niobium used for the fabrication of the SRF cavities after treating by recently discovered nitrogen doping methods. Cylindrical niobium samples have been subjected to the standard surface treatments applied to the cavities (electro-polishing, l 20°C bake) and compared with samples treated by additional nitrogen doping recipes routinely used to reach ultra-high quality factor values (>3· 1010 at 2 K, 16 MV/m). The DC magnetization curves and the complex magnetic AC susceptibility have been measured. Evidence for the lowered field of first flux penetration after nitrogen doping is found suggesting a correlation with the lowered quench fields. Superconducting critical temperatures Tc = 9.25 K are found to be in agreement with previous measurements, and no strong effect on the critical surface field (Bd) from nitrogen doping was found.

The Effect of Certain Types of Lattice Defects on the Superconducting Properties of Niobium

The Effect of Certain Types of Lattice Defects on the Superconducting Properties of Niobium PDF Author: Franklin Hadley Cocks
Publisher:
ISBN:
Category :
Languages : en
Pages : 68

Get Book Here

Book Description


Springback in Deep Drawn High Purity Niobium for Superconductor Cavities

Springback in Deep Drawn High Purity Niobium for Superconductor Cavities PDF Author: Ganapati Rao Myneni
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Superconducting radio frequency (SRF) cavities made from deep drawn high-purity niobium have become a popular approach for the design of particle accelerators. A number of current accelerators use this technology and it is a leading candidate for future designs. The development of this technology has required significant advances in many scientific fields including metallurgy, high vacuum physics, surface science, and forming. Recently proposed modifications to the current process for fabrication of these cavities has resulted in increased concern about the distribution of deformation, residual stress patterns, and springback. This presentation will report on the findings of a recently initiated program to study plastic flow and springback in the fabrication of these cavities and the influence of metallurgical variables including grain size and impurity content.