Effect of Genotypes and Nitrogen on Grain Quality of Sorghum

Effect of Genotypes and Nitrogen on Grain Quality of Sorghum PDF Author: Sory Diallo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Sorghum (Sorghum bicolor L. Moench) is cultivated as an important food grain in the semi-arid regions of Africa. Processed grain sorghum is traditionally consumed as porridge, couscous, traditional tô or beer. The quality of such foods is highly dependent upon grain characteristics. Sorghum grain quality traits mainly include kernel hardness, kernel weight, kernel size, protein content and kernel color. Grain quality traits are often influenced by environment, genotypes, fertilizer management and their interaction. The objective of this study was to determine the impact of different levels of nitrogen application (0, 45, and 90 kg ha−1) on grain quality of selected sorghum genotypes. The field experiment was conducted at three locations in 2010 (Manhattan, Ottawa, and Hays) and at two locations in 2011 (Manhattan and Ottawa). The experiment was laid in split plot randomized complete bloc design and replicated four times. The main plots were assigned to three N regimes: control (0 kg N ha−1), half recommended rate (45 kg N ha−1) and recommended rate (90 kg N ha−1). The subplots were assigned to twelve genotypes (six hybrids and six inbred lines). Plot size was 6.1 m x 3.0 m with a row spacing of 0.75 m. After harvest, grain quality traits (hardness, weight, diameter and protein content) were evaluated using standard procedures and the data subjected to statistical design using SAS. There were significant effects of genotype for most grain quality traits across both locations in Manhattan. Inbred lines SC35 and SC599 had maximum hardness at all locations while hybrid 95207, had the lowest hardness for all locations. Also, Inbred lines SC35 and Tx340 had maximum protein content at all the locations. While hybrids 95207, 26056, 23012 had the lowest protein content. Genotypes Tx430, SC35, had higher hardness and with higher protein content were classified as high quality. We conclude that application of N (45 or 90 kg ha−1) significantly improved grain protein, but not other quality traits. There are opportunities to improve grain protein through fertilizer management and plant breeding.

Effect of Genotypes and Nitrogen on Grain Quality of Sorghum

Effect of Genotypes and Nitrogen on Grain Quality of Sorghum PDF Author: Sory Diallo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Sorghum (Sorghum bicolor L. Moench) is cultivated as an important food grain in the semi-arid regions of Africa. Processed grain sorghum is traditionally consumed as porridge, couscous, traditional tô or beer. The quality of such foods is highly dependent upon grain characteristics. Sorghum grain quality traits mainly include kernel hardness, kernel weight, kernel size, protein content and kernel color. Grain quality traits are often influenced by environment, genotypes, fertilizer management and their interaction. The objective of this study was to determine the impact of different levels of nitrogen application (0, 45, and 90 kg ha−1) on grain quality of selected sorghum genotypes. The field experiment was conducted at three locations in 2010 (Manhattan, Ottawa, and Hays) and at two locations in 2011 (Manhattan and Ottawa). The experiment was laid in split plot randomized complete bloc design and replicated four times. The main plots were assigned to three N regimes: control (0 kg N ha−1), half recommended rate (45 kg N ha−1) and recommended rate (90 kg N ha−1). The subplots were assigned to twelve genotypes (six hybrids and six inbred lines). Plot size was 6.1 m x 3.0 m with a row spacing of 0.75 m. After harvest, grain quality traits (hardness, weight, diameter and protein content) were evaluated using standard procedures and the data subjected to statistical design using SAS. There were significant effects of genotype for most grain quality traits across both locations in Manhattan. Inbred lines SC35 and SC599 had maximum hardness at all locations while hybrid 95207, had the lowest hardness for all locations. Also, Inbred lines SC35 and Tx340 had maximum protein content at all the locations. While hybrids 95207, 26056, 23012 had the lowest protein content. Genotypes Tx430, SC35, had higher hardness and with higher protein content were classified as high quality. We conclude that application of N (45 or 90 kg ha−1) significantly improved grain protein, but not other quality traits. There are opportunities to improve grain protein through fertilizer management and plant breeding.

Variation Among Grain Sorghum Genotypes in Response to Nitrogen Fertilizer

Variation Among Grain Sorghum Genotypes in Response to Nitrogen Fertilizer PDF Author: George Yakubu Mahama
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Grain sorghum [Sorghum bicolor (L.) Moench] is an important crop in the semi-arid regions of Africa, Asia and United States. Productivity of grain sorghum is limited by soil fertility, especially nitrogen (N). Sorghum genotypes are known to vary in their response to nitrogen, however, the information on nitrogen use efficiency (NUE) is limited. The objectives of this research were to (a) determine the response of sorghum genotypes (hybrids and inbred lines) to nitrogen fertilizer (b) quantify genotypic differences in NUE; and (c) determine physiological and morphological basis of NUE. Field experiments were conducted at three locations in Kansas (Hays, Ottawa and Manhattan) during 2010 and 2011. Six hybrids and six inbred lines of grain sorghum were grown with 0, 45 and 90 kg N ha−1. The experimental design was a split-plot design with N regimes as main plots and genotypes as sub-plot, with four replications. Planting was done in May and June across all the locations, and nitrogen fertilizer (Urea, 46% N) was applied at emergence. Data on N concentration in the leaves, stems and grain were determined. NUE and components of N use were computed for Ottawa and Manhattan as follows: Nitrogen use efficiency (NUE): Grain weight / N supplied; Nitrogen utilization efficiency: Grain weight / N total in plant; Nitrogen uptake efficiency: N total in plant / N supplied; Percent fertilizer recovery = [uptake (fertilized plot) N uptake (un- fertilized plot)] / [N applied] x 100; and Nitrogen harvest index (NHI) = Grain N / N total in plant. Where N supplied = Rate of N fertilizer applied + soil N supplied. Growth and yield data were collected at all locations. There were significant effects of genotypes (P

Effects of Planting Practices and Nitrogen Management on Grain Sorghum Production

Effects of Planting Practices and Nitrogen Management on Grain Sorghum Production PDF Author: Alassane Maiga
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Sorghum [Sorghum bicolor (L.) Moench] is a relatively drought- and heat-tolerant cereal crop. Global demand and consumption of agricultural crops for food, feed, and fuel is increasing at a rapid pace. To satisfy the growing worldwide demand for grain, production practices must be well optimized and managed. The objectives of the present study were: to optimize sorghum production by determining the best management practices (planting date, row spacing, seeding rate, hybrid maturity) for growth and yield, to evaluate the agronomic responsiveness of grain sorghum genotypes to nitrogen (N) fertilizer and to develop a partial financial budget to N fertilizer application based on best management practices. In order to meet these objectives, field experiments were conducted in 2009, 2010 and 2011 at Manhattan, Belleville, Ottawa, Hutchinson, Hays, at KSU Experiment Stations and Salina, and Randolph at Private Farms. Results indicated that early planting date (late May) and narrow row spacing (25 cm) providing the most equidistant spacing, produced better plant growth, light interception, yield components (number of grains per panicle, 300-grain weight), and biological yield. Results indicated that with increasing N rate, there was a proportional increase in chlorophyll SPAD meter reading, leaf color scores and number of green leaves. There was a significant difference among hybrids for N uptake, NUE and grain yield. However, there was no effect of N and no interaction between N and hybrid on grain yield. Over all, the genotypes with high NUE also had higher grain yield. Economic analysis using partial budget indicated that all N levels had positive gross benefit greater than control at all locations. However, the response varied across locations. Our research has shown that sorghum responds to changing management practices and opportunities exist to increase grain yield by optimizing planting date, seeding rate, row spacing, N application and selection of genotypes.

Nitrogen and Genotype Effects on Sorghum Produced For Grain and Biomass

Nitrogen and Genotype Effects on Sorghum Produced For Grain and Biomass PDF Author: F. M. Hons
Publisher:
ISBN:
Category : Sorghum
Languages : en
Pages : 10

Get Book Here

Book Description


Sorghum

Sorghum PDF Author: Ignacio A. Ciampitti
Publisher: John Wiley & Sons
ISBN: 0891186271
Category : Technology & Engineering
Languages : en
Pages : 528

Get Book Here

Book Description
Sorghum is among the top five cereals and one of the key crops in global food security efforts. Sorghum is a resilient crop under high-stress environments, ensuring productivity and access to food when other crops fail. Scientists see the potential of sorghum as a main staple food in a future challenged by climate change. The contributors provide a comprehensive review of sorghum knowledge. The discussion covers genetic improvements, development of new hybrids, biotechnology, and physiological modifications. Production topics include water and nutrient management, rotations, and pest control. Final end uses, sorghum as a bioenergy crop, markets, and the future of sorghum are presented. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.

Research Progress Report on Inheritance and Improvement of Protein Quality and Content in Sorghum Bicolor (L.) Moench

Research Progress Report on Inheritance and Improvement of Protein Quality and Content in Sorghum Bicolor (L.) Moench PDF Author: John David Axtell
Publisher:
ISBN:
Category : Grain
Languages : en
Pages : 148

Get Book Here

Book Description


The Effect of Soil Water Potential and Nitrogen Content on Several Agronomic Factors Associated with Three Grain Sorghum Genotypes

The Effect of Soil Water Potential and Nitrogen Content on Several Agronomic Factors Associated with Three Grain Sorghum Genotypes PDF Author: Brad Helton
Publisher:
ISBN:
Category : Plants
Languages : en
Pages : 236

Get Book Here

Book Description


Variation in Nitrogen Use Efficiency Among Grain Sorghum Genotypes

Variation in Nitrogen Use Efficiency Among Grain Sorghum Genotypes PDF Author: Michael J. Lavelle
Publisher:
ISBN:
Category : Nitrogen fertilizers
Languages : en
Pages : 150

Get Book Here

Book Description


Nitrogen Use Efficiency and Water Use Efficiency of Grain Sorghum, Sorghum Bicolor (L.), Genotypes as Affected by Three Forms of Nitrogen Fertilizer at Two Soil Water Potentials and Three Growth Stages

Nitrogen Use Efficiency and Water Use Efficiency of Grain Sorghum, Sorghum Bicolor (L.), Genotypes as Affected by Three Forms of Nitrogen Fertilizer at Two Soil Water Potentials and Three Growth Stages PDF Author: Jeongmin Lee
Publisher:
ISBN:
Category : Crops and nitrogen
Languages : en
Pages : 242

Get Book Here

Book Description


Yield and Quality of Sorghum Genotypes as Affected by Nitrogen and Water

Yield and Quality of Sorghum Genotypes as Affected by Nitrogen and Water PDF Author: Larry Gene Balko
Publisher:
ISBN:
Category : Nitrogen fertilizers
Languages : en
Pages : 198

Get Book Here

Book Description