Effect of Cross-Field Drifts and Core Rotation on Flows in the Main Scrape-Off Layer of DIII-D L-mode Plasmas

Effect of Cross-Field Drifts and Core Rotation on Flows in the Main Scrape-Off Layer of DIII-D L-mode Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
The flow velocities of deuterons and low charge-state carbon ions have been measured simultaneously for the first time at the crown of the main SOL for low-density plasmas in DIII-D. The dependences of the flow fields on the direction of the cross-field drifts (E x B and B x (nabla)B) and core plasma rotation were investigated. The measurements indicate that the carbon ion flow direction and magnitude along the magnetic field lines are not necessarily determined by the deuteron flow field, but other physics must also play a role. The deuteron velocities at the plasma crown are high (20-30 km/s) in configurations with the ion B x (nabla)B drift toward the divertor X-point, while nearly zero in configurations with the opposite B x (nabla)B drift direction. The flow velocities of doubly charged carbon ions are independent of the ion B x (nabla)B drift direction, and the measurements suggest a stagnation point in the flow field at the crown of the plasma. Both deuteron and carbon ion flow velocities in the SOL were found to be independent of the direction of core plasma rotation. Simulations with the UEDGE code have been carried out to better understand the underlying physics processes. Including the cross-field drifts in the simulations produced divertor solutions that are in significantly closer agreement with the measurements. They do not, however, reproduce the measured flow fields at the crown for the configuration with the ion B x (nabla)B drift toward the divertor X-point.

Effect of Cross-Field Drifts and Core Rotation on Flows in the Main Scrape-Off Layer of DIII-D L-mode Plasmas

Effect of Cross-Field Drifts and Core Rotation on Flows in the Main Scrape-Off Layer of DIII-D L-mode Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
The flow velocities of deuterons and low charge-state carbon ions have been measured simultaneously for the first time at the crown of the main SOL for low-density plasmas in DIII-D. The dependences of the flow fields on the direction of the cross-field drifts (E x B and B x (nabla)B) and core plasma rotation were investigated. The measurements indicate that the carbon ion flow direction and magnitude along the magnetic field lines are not necessarily determined by the deuteron flow field, but other physics must also play a role. The deuteron velocities at the plasma crown are high (20-30 km/s) in configurations with the ion B x (nabla)B drift toward the divertor X-point, while nearly zero in configurations with the opposite B x (nabla)B drift direction. The flow velocities of doubly charged carbon ions are independent of the ion B x (nabla)B drift direction, and the measurements suggest a stagnation point in the flow field at the crown of the plasma. Both deuteron and carbon ion flow velocities in the SOL were found to be independent of the direction of core plasma rotation. Simulations with the UEDGE code have been carried out to better understand the underlying physics processes. Including the cross-field drifts in the simulations produced divertor solutions that are in significantly closer agreement with the measurements. They do not, however, reproduce the measured flow fields at the crown for the configuration with the ion B x (nabla)B drift toward the divertor X-point.

Modeling The Effect of Drifts on the Edge, Scrape-Off Layer, and Divertor Plasma in DIII-D.

Modeling The Effect of Drifts on the Edge, Scrape-Off Layer, and Divertor Plasma in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Simulations of plasmas with a DIII-D shape indicate plasma drifts are important at power levels near the L- to H-mode plasma transition. In addition to enhancing plasma flows in the divertor region, drifts are found to play a key role in establishing highly sheared radial electric fields in the edge of the confined plasma, for the physics of the high confinement operating mode (H-mode). Measurements of the plasma structure in the vicinity of the X-point of DIII-D indicate the importance of drifts on plasma flow between the scrape-off layer (SOL) and closed field lines. The large electric fields provide large flows around the X-point, and these are conjectured to play a role in the transition from L- to H-mode confinement. These results indicate the relevance of modeling the edge and SOL plasmas of present tokamak devices using models which include E x B, (nabla)B, and pressure gradient drifts. The results of simulation of specific DIII-D discharges is reported in this paper. They start with discussion of the simulation of an Ohmic discharge in Section 2, including a study of the effect of varying several operational parameters. Simulation of a higher triangularity L-mode discharge is discussed in Section, and a summary is given in Section 4.

Physics Briefs

Physics Briefs PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 568

Get Book Here

Book Description


The Scrape-off-layer in Alcator C-Mod

The Scrape-off-layer in Alcator C-Mod PDF Author: James L. Terry
Publisher:
ISBN:
Category :
Languages : en
Pages : 68

Get Book Here

Book Description
(cont.) Evidence that this turbulent transport may play an important role in the core-plasma density limit is presented. Much lower levels of turbulence and no blobs are observed in the high-field-side scrape-off-layer. For single-null magnetic configurations, plasma in the inboard scrape-off-layer appears to be almost entirely a result of plasma flow along field lines from the low-field side. Strong parallel flows with sensitivity to magnetic topology are found, along with strong evidence for momentum coupling between these scrape-off-layer flows and core toroidal rotation

Collisional Transport in Magnetized Plasmas

Collisional Transport in Magnetized Plasmas PDF Author: Per Helander
Publisher: Cambridge University Press
ISBN: 9780521020985
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description
A graduate level text treating transport theory, an essential element of theoretical plasma physics.

Far Scrape-Off Layer and Near Wall Plasma Studies in DIII-D.

Far Scrape-Off Layer and Near Wall Plasma Studies in DIII-D. PDF Author: J. Watkins
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Get Book Here

Book Description
Far scrape-off layer (SOL) plasma parameters in DIII-D depend strongly on the discharge density and confinement regime. In L-mode, cross-field transport increases with the average discharge density and elevates the far SOL density, thus increasing plasma-wall contact. Far SOL density near the low field side (LFS) of the main chamber wall also increases with decreasing plasma current and with decreasing outer wall gap. In H-mode, between edge localized modes (ELMs), plasma-wall contact is weaker than in L-mode. During ELMs plasma fluxes to the LFS wall increase to, or above the L-mode levels. A large fraction of the net cross-field fluxes is convected through the SOL by large amplitude intermittent transport events. In high density L-mode and during ELMs in H-mode, intermittent events propagate all the way to the LFS wall and may cause sputtering.

DIII-D Data for Modeling the Scrape-off-layer Plasma

DIII-D Data for Modeling the Scrape-off-layer Plasma PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 48

Get Book Here

Book Description
We are in the process of assembling a database of edge and divertor plasma parameters suitable for use in benchmarking tious 2D models of the scrape-off- layer (SOL) plasma. Also, we are using the Braams B2 code to derive transport coefficients for the edge plssma. In parallel, work is starting on an upgrade to the B2 code that includes padlel current flow and EXB drifts. These efforts are directed at increasing the confidence level of models of the tokamak edge plasma so that we can predict the effect of planned upgrades to DIII-D (e.g., the Advanced Divertor Program) and the performance of next generation machines such as CIT or ITER, where initial design studies show that plasma conditions at the divertor targets can have a large impact on the lifetime and cost of the machine. This report summarizes our recent progress in characterizing the DIII-D SOL plasma and in modeling these data with the the B2 code. Section I contains a brief description of the diagnostics available for characterizing the SOL plasma. In Section II we present our measurements of the SOL parameters for H-mode plasmas. This includes data showing how the divertor plasma parameters (n{sub e}(r), T{sub e}(r), and Q(r)) vary from ohmic to L-mode to H-mode, and power balance for quasi-stationary H-mode plasmas. Section III covers divertor-target heat-flux asymmetries for double and single null operation with forward and reversed toroidal field. In Section IV we show the scaling of L-mode parameters with neutral beam power, and Section V concludes with a summary of the results obtained from the Braams B2 SOL simulation code.

Plasma Flows in the Alcator C-Mod Scrape-off Layer

Plasma Flows in the Alcator C-Mod Scrape-off Layer PDF Author: Noah M. Smick
Publisher:
ISBN:
Category :
Languages : en
Pages : 234

Get Book Here

Book Description
(Cont.) Toroidal rotation, Pfirsch-Schlilter and transport-driven contributions are unambiguously identified. Parallel flows are found to dominate the high-field particle fluxes; the total poloidally-directed flow carries one half of the particle flux arriving on the inner divertor. As a result, convection is also found to be an important player in high-field side heat transport. In contrast, E_r x B plus parallel flows yield a mostly-toroidal flow component in the low-field SOL. The magnitude of the transport-driven flow component is found to be quantitatively consistent with radial fluctuation-induced particle fluxes measured on the low-field side, identifying this as the primary driver. In contrast, fluctuation-induced flux measurements on the high-field side midplane are found to be essentially zero, thereby excluding an 'inward pinch' effect as the mechanism that closes the mass-flow loop in this region.

The Plasma Boundary of Magnetic Fusion Devices

The Plasma Boundary of Magnetic Fusion Devices PDF Author: P.C Stangeby
Publisher: CRC Press
ISBN: 9780750305594
Category : Science
Languages : en
Pages : 738

Get Book Here

Book Description
The Plasma Boundary of Magnetic Fusion Devices introduces the physics of the plasma boundary region, including plasma-surface interactions, with an emphasis on those occurring in magnetically confined fusion plasmas. The book covers plasma-surface interaction, Debye sheaths, sputtering, scrape-off layers, plasma impurities, recycling and control, 1D and 2D fluid and kinetic modeling of particle transport, plasma properties at the edge, diverter and limiter physics, and control of the plasma boundary. Divided into three parts, the book begins with Part 1, an introduction to the plasma boundary. The derivations are heuristic and worked problems help crystallize physical intuition, which is emphasized throughout. Part 2 provides an introduction to methods of modeling the plasma edge region and for interpreting computer code results. Part 3 presents a collection of essays on currently active research hot topics. With an extensive bibliography and index, this book is an invaluable first port-of-call for researchers interested in plasma-surface interactions.

Theory of Fusion Plasmas

Theory of Fusion Plasmas PDF Author: Olivier Sauter
Publisher: American Institute of Physics
ISBN: 9780735406001
Category : Science
Languages : en
Pages : 400

Get Book Here

Book Description
The Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favorable for informal and in depth discussions. Invited and contributed papers present state-of-the art researches in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always allows a fruitful mix of experienced researchers and students, to allow for a better understanding of the key theoretical physics models and applications, such as: Theoretical issues related to burning plasmas; Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive; Macroinstabilities; Plasma-Edge Physics and Divertors; Fast particles instabilities.