Author: Sinan Akkar
Publisher: Springer Science & Business Media
ISBN: 9400701527
Category : Nature
Languages : en
Pages : 281
Book Description
This book addresses current activities in strong-motion networks around the globe, covering issues related to designing, maintaining and disseminating information from these arrays. The book is divided into three principal sections. The first section includes recent developments in regional and global ground-motion predictive models. It presents discussions on the similarities and differences of ground motion estimations from these models and their application to design spectra as well as other novel procedures for predicting engineering parameters in seismic regions with sparse data. The second section introduces topics about the particular methodologies being implemented in the recently established global and regional strong-motion databanks in Europe to maintain and disseminate the archived accelerometric data. The final section describes major strong-motion arrays around the world and their historical developments. The last three chapters of this section introduce projects carried out within the context of arrays deployed for seismic risk studies in metropolitan areas. Audience: This timely book will be of particular interest for researchers who use accelerometric data extensively to conduct studies in earthquake engineering and engineering seismology.
Earthquake Data in Engineering Seismology
Author: Sinan Akkar
Publisher: Springer Science & Business Media
ISBN: 9400701527
Category : Nature
Languages : en
Pages : 281
Book Description
This book addresses current activities in strong-motion networks around the globe, covering issues related to designing, maintaining and disseminating information from these arrays. The book is divided into three principal sections. The first section includes recent developments in regional and global ground-motion predictive models. It presents discussions on the similarities and differences of ground motion estimations from these models and their application to design spectra as well as other novel procedures for predicting engineering parameters in seismic regions with sparse data. The second section introduces topics about the particular methodologies being implemented in the recently established global and regional strong-motion databanks in Europe to maintain and disseminate the archived accelerometric data. The final section describes major strong-motion arrays around the world and their historical developments. The last three chapters of this section introduce projects carried out within the context of arrays deployed for seismic risk studies in metropolitan areas. Audience: This timely book will be of particular interest for researchers who use accelerometric data extensively to conduct studies in earthquake engineering and engineering seismology.
Publisher: Springer Science & Business Media
ISBN: 9400701527
Category : Nature
Languages : en
Pages : 281
Book Description
This book addresses current activities in strong-motion networks around the globe, covering issues related to designing, maintaining and disseminating information from these arrays. The book is divided into three principal sections. The first section includes recent developments in regional and global ground-motion predictive models. It presents discussions on the similarities and differences of ground motion estimations from these models and their application to design spectra as well as other novel procedures for predicting engineering parameters in seismic regions with sparse data. The second section introduces topics about the particular methodologies being implemented in the recently established global and regional strong-motion databanks in Europe to maintain and disseminate the archived accelerometric data. The final section describes major strong-motion arrays around the world and their historical developments. The last three chapters of this section introduce projects carried out within the context of arrays deployed for seismic risk studies in metropolitan areas. Audience: This timely book will be of particular interest for researchers who use accelerometric data extensively to conduct studies in earthquake engineering and engineering seismology.
Engineering Seismology and Earthquake Engineering
Author: J. Solnes
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 332
Book Description
by Julius S6lnes An Advanced Study Institute on engineering seismology and earthquake engineering was held in Izrrir, 'rurkey July 2-13, 1973 under the auspices of the Scientific Affairs Division of NATO. The Institute was organized by an organizing committee headed by the two scientific directors and with representation by the Turkish National Science Foundation, Turkish National Committee for Earthquake Engineering, the Middle East Technical University and the Aegean University. 93 scientists and engineers of 18 countries took part in the work of the Institute which comprised 10 working days with lectures, discussions and panel meetings. The main lecture topics of the Institute were covered in five main sections: 1. Generic causes of earthquakes. 2. Ground motion and foundation response. 3. Earthquake response of structures and design consi derations. 4. Codes and regulations; implementation. 5. Earthquake hazards and emergency planning. Upon completion of each section, general discussion and short presentations by several of the participants took place and summary statements were offered by the main lecturers. The atmosphere of the meetings was in- VI formal and cordial thus giving rise to many unorthodox and newly conceived ideas.
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 332
Book Description
by Julius S6lnes An Advanced Study Institute on engineering seismology and earthquake engineering was held in Izrrir, 'rurkey July 2-13, 1973 under the auspices of the Scientific Affairs Division of NATO. The Institute was organized by an organizing committee headed by the two scientific directors and with representation by the Turkish National Science Foundation, Turkish National Committee for Earthquake Engineering, the Middle East Technical University and the Aegean University. 93 scientists and engineers of 18 countries took part in the work of the Institute which comprised 10 working days with lectures, discussions and panel meetings. The main lecture topics of the Institute were covered in five main sections: 1. Generic causes of earthquakes. 2. Ground motion and foundation response. 3. Earthquake response of structures and design consi derations. 4. Codes and regulations; implementation. 5. Earthquake hazards and emergency planning. Upon completion of each section, general discussion and short presentations by several of the participants took place and summary statements were offered by the main lecturers. The atmosphere of the meetings was in- VI formal and cordial thus giving rise to many unorthodox and newly conceived ideas.
International Handbook of Earthquake & Engineering Seismology, Part A
Author: William H.K. Lee
Publisher: Elsevier
ISBN: 0080489222
Category : Science
Languages : en
Pages : 994
Book Description
Modern scientific investigations of earthquakes began in the 1880s, and the International Association of Seismology was organized in 1901 to promote collaboration of scientists and engineers in studying earthquakes. The International Handbook of Earthquake and Engineering Seismology, under the auspices of the International Association of Seismology and Physics of the Earth's Interior (IASPEI), was prepared by leading experts under a distinguished international advisory board and team of editors.The content is organized into 56 chapters and includes over 430 figures, 24 of which are in color. This large-format, comprehensive reference summarizes well-established facts, reviews relevant theories, surveys useful methods and techniques, and documents and archives basic seismic data. It will be the authoritative reference for scientists and engineers and a quick and handy reference for seismologists.Also available is The International Handbook of Earthquake and Engineering Seismology, Part B.
Publisher: Elsevier
ISBN: 0080489222
Category : Science
Languages : en
Pages : 994
Book Description
Modern scientific investigations of earthquakes began in the 1880s, and the International Association of Seismology was organized in 1901 to promote collaboration of scientists and engineers in studying earthquakes. The International Handbook of Earthquake and Engineering Seismology, under the auspices of the International Association of Seismology and Physics of the Earth's Interior (IASPEI), was prepared by leading experts under a distinguished international advisory board and team of editors.The content is organized into 56 chapters and includes over 430 figures, 24 of which are in color. This large-format, comprehensive reference summarizes well-established facts, reviews relevant theories, surveys useful methods and techniques, and documents and archives basic seismic data. It will be the authoritative reference for scientists and engineers and a quick and handy reference for seismologists.Also available is The International Handbook of Earthquake and Engineering Seismology, Part B.
Basic Earthquake Engineering
Author: Halûk Sucuoğlu
Publisher: Springer
ISBN: 3319010263
Category : Science
Languages : en
Pages : 297
Book Description
This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.
Publisher: Springer
ISBN: 3319010263
Category : Science
Languages : en
Pages : 297
Book Description
This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.
Routine Data Processing in Earthquake Seismology
Author: Jens Havskov
Publisher: Springer Science & Business Media
ISBN: 9048186978
Category : Science
Languages : en
Pages : 350
Book Description
The purpose of this book is to get a practical understanding of the most common processing techniques in earthquake seismology. The book deals with manual methods and computer assisted methods. Each topic will be introduced with the basic theory followed by practical examples and exercises. There are manual exercises entirely based on the printed material of the book, as well as computer exercises based on public domain software. Most exercises are computer based. The software used, as well as all test data are available from http://extras.springer.com. This book is intended for everyone processing earthquake data, both in the observatory routine and in connection with research. Using the exercises, the book can also be used as a basis for university courses in earthquake processing. Since the main emphasis is on processing, the theory will only be dealt with to the extent needed to understand the processing steps, however references will be given to where more extensive explanations can be found. Includes: • Exercises • Test data • Public domain software (SEISAN) available from http://extras.springer.com
Publisher: Springer Science & Business Media
ISBN: 9048186978
Category : Science
Languages : en
Pages : 350
Book Description
The purpose of this book is to get a practical understanding of the most common processing techniques in earthquake seismology. The book deals with manual methods and computer assisted methods. Each topic will be introduced with the basic theory followed by practical examples and exercises. There are manual exercises entirely based on the printed material of the book, as well as computer exercises based on public domain software. Most exercises are computer based. The software used, as well as all test data are available from http://extras.springer.com. This book is intended for everyone processing earthquake data, both in the observatory routine and in connection with research. Using the exercises, the book can also be used as a basis for university courses in earthquake processing. Since the main emphasis is on processing, the theory will only be dealt with to the extent needed to understand the processing steps, however references will be given to where more extensive explanations can be found. Includes: • Exercises • Test data • Public domain software (SEISAN) available from http://extras.springer.com
Strong Ground Motion Seismology
Author: Mustafa Özder Erdik
Publisher: Springer Science & Business Media
ISBN: 9401730954
Category : Science
Languages : en
Pages : 609
Book Description
This book contains selected papers presented at the NATO Advanced Study Institute on "Strong Ground Motion Seismology", held in Ankara, Turkey between June 10 and 21, 1985. The strong ground motion resulting from a major earthquake determines the level of the seismic hazard to enable earthquake engineers to assess the structural performance and the consecutive risks to the property and life, as well as providing detailed information to seismologists about its source mechanism. From the earthquake engineering point the main problem is the specification of a design level ground motion for a given source-site-structure-economic life and risk combination through deterministic and probabilistic approaches. In seismology the strong motion data provide the high frequency information to determine the rupture process and the complexity of the source mechanism. The effects of the propagation path on the strong ground motion is a research area receiving sub stantial attenuation both from earthquake engineers and seismologists. The Institute provided a venue for the treatment of the subject matter by a series of lectures on earthquake source models and near field theories; effects of propagation paths and site conditions, numerical and empirical methods for prediction; data acquisition and analysis; hazard assessment and engineering application.
Publisher: Springer Science & Business Media
ISBN: 9401730954
Category : Science
Languages : en
Pages : 609
Book Description
This book contains selected papers presented at the NATO Advanced Study Institute on "Strong Ground Motion Seismology", held in Ankara, Turkey between June 10 and 21, 1985. The strong ground motion resulting from a major earthquake determines the level of the seismic hazard to enable earthquake engineers to assess the structural performance and the consecutive risks to the property and life, as well as providing detailed information to seismologists about its source mechanism. From the earthquake engineering point the main problem is the specification of a design level ground motion for a given source-site-structure-economic life and risk combination through deterministic and probabilistic approaches. In seismology the strong motion data provide the high frequency information to determine the rupture process and the complexity of the source mechanism. The effects of the propagation path on the strong ground motion is a research area receiving sub stantial attenuation both from earthquake engineers and seismologists. The Institute provided a venue for the treatment of the subject matter by a series of lectures on earthquake source models and near field theories; effects of propagation paths and site conditions, numerical and empirical methods for prediction; data acquisition and analysis; hazard assessment and engineering application.
Advanced Earthquake Engineering Analysis
Author: Alain Pecker
Publisher: Springer Science & Business Media
ISBN: 321174214X
Category : Science
Languages : en
Pages : 218
Book Description
During the last decade, the state-of-the-art in Earthquake Engineering Design and Analysis has made significant steps towards a more rational analysis of structures. This book reviews the fundamentals of displacement based methods. Starting from engineering seismology and earthquake geotechnical engineering, it proceeds to focus on design, analysis and testing of structures with emphasis on buildings and bridges.
Publisher: Springer Science & Business Media
ISBN: 321174214X
Category : Science
Languages : en
Pages : 218
Book Description
During the last decade, the state-of-the-art in Earthquake Engineering Design and Analysis has made significant steps towards a more rational analysis of structures. This book reviews the fundamentals of displacement based methods. Starting from engineering seismology and earthquake geotechnical engineering, it proceeds to focus on design, analysis and testing of structures with emphasis on buildings and bridges.
International Handbook of Earthquake Engineering
Author: Mario Paz
Publisher: Springer Science & Business Media
ISBN: 146152069X
Category : Technology & Engineering
Languages : en
Pages : 558
Book Description
The subject of earthquake engineering has been the focus of my teaching and research for many years. Thus, when Mario Paz, the editor of this handbook, asked me to write a Foreword, I was interested and honored by his request. Worldwide, people are beginning to understand the severity of the danger to present and future generations caused by the destruction of the environment. Earthquakes pose a similar threat; thus, the proper use of methods for earthquake-resistant design and construction is vitally important for countries that are at high risk of being subjected to strong-motion earthquakes. Most seismic activity is the result of tectonic earthquakes. Tectonic earthquakes are very special events in that, although they occur frequently, their probability of becoming natural hazards for a specific urban area is very small. When a severe earthquake does occur near an urban area, however, its consequences are very large in terms of structural destruction and human suffering.
Publisher: Springer Science & Business Media
ISBN: 146152069X
Category : Technology & Engineering
Languages : en
Pages : 558
Book Description
The subject of earthquake engineering has been the focus of my teaching and research for many years. Thus, when Mario Paz, the editor of this handbook, asked me to write a Foreword, I was interested and honored by his request. Worldwide, people are beginning to understand the severity of the danger to present and future generations caused by the destruction of the environment. Earthquakes pose a similar threat; thus, the proper use of methods for earthquake-resistant design and construction is vitally important for countries that are at high risk of being subjected to strong-motion earthquakes. Most seismic activity is the result of tectonic earthquakes. Tectonic earthquakes are very special events in that, although they occur frequently, their probability of becoming natural hazards for a specific urban area is very small. When a severe earthquake does occur near an urban area, however, its consequences are very large in terms of structural destruction and human suffering.
Engineering Seismology
Author: Özdoğan Yilmaz
Publisher:
ISBN: 9781560803294
Category : Earthquake engineering
Languages : en
Pages : 954
Book Description
The scope of engineering seismology includes geotechnical site investigations for buildings and engineering infrastructures, such as dams, levees, bridges, and tunnels, landslide and active-fault investigations, seismic microzonation, and geophysical investigations of historic buildings. These projects require multidisciplinary participation by the geologist, geophysicist, and geotechnical and earthquake engineers. A key objective of this book (SEG Investigations in Geophysics Series No. 17) by Öz Yilmaz is to encourage the specialists from these disciplines to apply the seismic method to solve the many challenging engineering problems they face. The broader scope of engineering seismology also includes exploration of earth resources, including groundwater exploration, coal and mineral exploration, and geothermal exploration. While focusing on the application of the seismic method to geotechnical site investigations, this book includes many case studies in all of the applications of engineering seismology.
Publisher:
ISBN: 9781560803294
Category : Earthquake engineering
Languages : en
Pages : 954
Book Description
The scope of engineering seismology includes geotechnical site investigations for buildings and engineering infrastructures, such as dams, levees, bridges, and tunnels, landslide and active-fault investigations, seismic microzonation, and geophysical investigations of historic buildings. These projects require multidisciplinary participation by the geologist, geophysicist, and geotechnical and earthquake engineers. A key objective of this book (SEG Investigations in Geophysics Series No. 17) by Öz Yilmaz is to encourage the specialists from these disciplines to apply the seismic method to solve the many challenging engineering problems they face. The broader scope of engineering seismology also includes exploration of earth resources, including groundwater exploration, coal and mineral exploration, and geothermal exploration. While focusing on the application of the seismic method to geotechnical site investigations, this book includes many case studies in all of the applications of engineering seismology.
Elements of Earthquake Engineering and Structural Dynamics
Author: André Filiatrault
Publisher: Presses inter Polytechnique
ISBN: 9782553010217
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena such as earthquakes involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by earthquakes. However, structural engineers must rely on the expertise of other specialists to realize these projects. Thus, this book not only focuses on structural analysis and design, but also discusses other disciplines, such as geology, seismology, and soil dynamics, providing basic knowledge in these areas so that structural engineers can better interact with different specialists when working on earthquake engineering projects."
Publisher: Presses inter Polytechnique
ISBN: 9782553010217
Category : Technology & Engineering
Languages : en
Pages : 436
Book Description
Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena such as earthquakes involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by earthquakes. However, structural engineers must rely on the expertise of other specialists to realize these projects. Thus, this book not only focuses on structural analysis and design, but also discusses other disciplines, such as geology, seismology, and soil dynamics, providing basic knowledge in these areas so that structural engineers can better interact with different specialists when working on earthquake engineering projects."